NTT小结及原根求法
注意
由于蒟蒻实在太弱了~^_^~暂时无法完成证明,仅能写出简单版总结
与FFT的区别
\(NTT\)与\(FFT\)的代码区别就是把单位根换成了原根,从而实现无精度误差与浮点数的巨大常数
原根具有单位根的所有特点,原根是在特定模数下的定义
对于模数\(p\),原根\(g\)满足:\(~_{i=0}^{p-1}g^i (mod~p)\)均不同
用\(type=1,g^{\frac{p-1}{2*mid}};type=-1,\dfrac{1}{g^{\frac{p-1}{2*mid}}}\)代替单位根
最后得到的值除一下\(limit\)
原根
快速求原根:对于模数\(p\)分解质因数,\(p-1=p_1^{k_1}...p_n^{k_n}\),原根\(g\)满足\(~_{i=1}^n g^{\frac{p-1}{p_i}}≠1(mod p)\)
求原根就直接分解\(p-1\),然后\(1\)~\(p\)枚举原根就行,通常原根很小,所以能快速求出
\(w=g^{\frac{p-1}{2*mid}}\)
NTT小结及原根求法的更多相关文章
- 快速数论变换(NTT)小结
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...
- [UOJ86]mx的组合数——NTT+数位DP+原根与指标+卢卡斯定理
题目链接: [UOJ86]mx的组合数 题目大意:给出四个数$p,n,l,r$,对于$\forall 0\le a\le p-1$,求$l\le x\le r,C_{x}^{n}\%p=a$的$x$的 ...
- x^a=b(mod c)求解x在[0,c-1]上解的个数模板+原根求法
/************************************* 求解x^a=b(mod c) x在[0,c-1]上解的个数模板 输入:1e9>=a,b>=1,1e9>= ...
- 【BZOJ3992】【SDOI2015】序列统计 原根 NTT
题目大意 有一个集合\(s\),里面的每个数都\(\geq0\)且\(<m\). 问有多少个长度为\(n\)的数列满足这个数列所有数的乘积模\(m\)为\(x\).答案模\(1004535809 ...
- $NTT$(快速数论变换)
- 概念引入 - 阶 对于$p \in N_+$且$(a, \ p) = 1$,满足$a^r \equiv 1 (mod \ p)$的最小的非负$r$为$a$模$p$意义下的阶,记作$\delta_p ...
- 从傅里叶变换(FFT)到数论变换(NTT)
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更 ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- DFT/FFT/NTT
在Seal库和HElib库中都用到了NTT技术,用于加快多项式计算,而NTT又是FFT的优化,FFT又来自于DFT,现在具体学习一下这三个技术! 基础概念 名词区分 1.DFT:离散傅立叶变换 2.F ...
- FFT/NTT 总结
本总结主要用于帮助个人理解,讲得不足之处,还请各位看官谅解 FFT 补充知识 \(n\)次单位复根(\(w_n\)): 使得\(z^n=1\)的一类复数,这些复数一共有\(n\)个,它们都分布在复平面 ...
随机推荐
- canvas教程(三) 绘制曲线
经过 canvas 教程(二) 绘制直线 我们知道了 canvas 的直线是怎么绘制的 而本次是给大家带来曲线相关的绘制 绘制圆形 在 canvas 中我们可以使用 arc 方法画一个圆 contex ...
- 智表ZCELL产品发布企业版
为了满足部分企业用户无限分发的需要,智表插件在专业版基础上推出企业版本(http://zcell.net/productinfo.html),功能与专业版本保持一致.授权方式采用提供企业客户授权工具, ...
- 解决 Orange Pi 烧录完系统后剩余可用空间过少的问题
输入命令 df -ha 这图是拿别人的 看到系统才使用3.2g,内存卡有16g,不可能满的. 执行命令,加上sudo,防止权限不够: sudo fs_resize 如果上面那个不行的话,试试这个命令( ...
- 如何基于Restful ABAP Programming模型开发并部署一个支持增删改查的Fiori应用
Jerry之前的文章30分钟用Restful ABAP Programming模型开发一个支持增删改查的Fiori应用 发布之后,有朋友问我,"没错, 我是在你的文章里看到了Fiori应用的 ...
- Flume 初探
Apache 是一个高可用.高可靠的,分布式的海量日志采集.聚合.传输系统,基于流式架构,灵活简单. Flume 最主要的作用就是实时读取服务器本地磁盘的数据,将数据写入HDFS中. Flume组成架 ...
- CentOS7- ABRT has detected 1 problem(s). For more info run: abrt-cli list --since 1548988705
CentOS7重启后,xshell连接,后出现ABRT has detected 1 problem(s). For more info run: abrt-cli list --since 1548 ...
- java操作redis(jedis)常用方法示例
说明:redis命令和jedis方法名基本是一一对应的 Redis常用命令1 连接操作命令 ● quit:关闭连接(connection) ● auth:简单密码认证 ● help cmd: 查看cm ...
- 微信小程序分享朋友圈 长海报 canvas 动态高度计算
业务场景 在微信中 小程序无法分享到朋友圈,目前大部分的解决方案都是,canvas动态绘制 生成图片后,保存到用户相册,用户进行分享照片到朋友圈,朋友圈打开图片后识别二维码进入小程序,达到分享目的 g ...
- 使用AutoIt实现文件上传
在网页上上传文件的时候,Selenium无法直接操作如Flash.JavaScript 或Ajax 等技术所实现的上传功能,这时候我们需要借用一个叫做AutoIt的软件来帮助我们事先自动化的上传操作. ...
- 转 C#关于DateTime得到的当前时间的格式和用法
DateTime.Now.ToShortTimeString() DateTime dt = DateTime.Now; dt.ToString();//2005-11-5 13:21:25 dt.T ...