Note for Reidentification by Relative Distance Comparison
link
Reidentification by Relative Distance Comparison
Challenge:
- large visual appearance changes caused by variations in view angle, lighting, background clutter, and occlusion
- 之前的大部分算法寻找独特的视觉特征。但寻找在数据规模大、现实条件不同的数据集中能够保持鲁棒性的视觉特征仍然十分困难。
- 在不同条件下,有些特征比其他特征更重要,更稳定,使用l1-Norm等普遍采用的标准的距离评估方法并不合适,因为它们会等权重地对待所有特征。
In order to find a correc match Given a query image of a person:
- First, a feature representation is computed from both the query and each of the gallery images.
- Second, the distance between each pair of potential matches is measured
Solution(part 1):
- given a set of features extracted from each person image, we seek to quantify and differentiate these features by learning the optimal distance measure that is most likely to give correct matches.
- In essence, images of each person in a training set form a class.
- This learning problem can be framed as a distance learning problem which always searches for a distance that minimizes intraclass distances while maximizing interclass distances.
Question:
the person reidentification problem has four characteristics
- The intraclass variation can be large and, more importantly, can vary significantly for different classes
- The interclass variation also varies drastically across different pairs of classes and there are often severe overlaps between classes in a feature space
- In order to capture the large intra and intervariations, the number of classes is necessarily large
- Annotating a large number of matched people across camera views is not only tedious, but also inherently limited in its usefulness
the data are inherently undersampled for building a representative class distribution
a learning model could easily be overfitted and/or be intractable if it is learned by minimizing intraclass distance and maximizing interclass distance simultaneously by brute-force
Solution(part 2):
- formulate the problem as a relative distance comparison (RDC) problem
- the model aims to learn an optimal distance in the sense that for a given query image, the true match is desired to be ranked higher than the wrong matches among the gallery image set
- not easily biased by large variations across many undersampled classes as it aims to seek an optimized individual comparison between any two data points rather than comparison among data distribution boundaries or among clusters of data
- Furthermore, in order to alleviate the large space complexity (memory usage cost) and the local optimum learning problem due to the proposed iterative algorithm for solving high-order nonlinear optimization criterion, we develop an ensemble RDC in this work
Details:
Proposed Relative Distance Comparison Learning
给出训练集\(Z={\{(\mathbf{z_i},y_i)\}}^N_{i=1}\),其中\(\mathbf{z_i}\)是表示一个视图中一个人的多维特征向量,\(y_i\)是对呀的类标签(人的ID)。
定义集合\(O_i=\{O_i = (x^p_i, x^n_i)\}\),其中\(x^p_i\)为两个相同类别样本的差异向量,\(x^n_i\)为两个不同类别样本的差异向量
\[ x=d(\mathbf{z,z'}),\quad \mathbf{z,z'} \in R^q\]
其中d是作用在矩阵每个元素上的差异函数。
给定\(O\),距离函数\(f\)以差异向量作为输入,通过相对距离比较的方式进行学习,从而使得
\[ f(x^p_i) < f(x^n_i)\]
为了描述这个优化目标,并且让它可以求导,令
\[C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)=\left(1+\exp \left\{f\left(\mathbf{x}_{i}^{p}\right)-f\left(\mathbf{x}_{i}^{n}\right)\right\}\right)^{-1}\]
假定the events of distance comparison between a relevant pair and a related irrelevant pair are independent,优化目标成为
\[\min _{f} r(f, O),\quad r(f, O)=-\log \left(\prod_{O_i} C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)\right)\]
令\(f\)为马氏距离,其中M为半正定矩阵。问题转化为学习M。
\[f(\mathbf{x})=\mathbf{x}^{T} \mathbf{M} \mathbf{x}, \quad \mathbf{M} \succeq 0\]
对矩阵M作特征分解,
\[\mathbf{M}=\mathbf{A} \mathbf{\Lambda} \mathbf{A}^{T}=\mathbf{W} \mathbf{W}^{T}, \quad \mathbf{W}=\mathbf{A} \mathbf{\Lambda}^{\frac{1}{2}}\]
其中\(\mathbf{A}\)由正交特征向量构成,而\(\mathbf{\Lambda}\)由对应特征值构成
令\(\mathbf{W}=(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}, \ldots, \mathbf{w}_{L})\)
问题转化为
\[\min _{\mathbf{W}} r(\mathbf{W}, O), \text { s.t. } \quad \mathbf{w}_{i}^{T} \mathbf{w}_{j}=0, \forall i \neq j\]
\[
r(\mathbf{W}, O)=\sum_{O_{i}} \log \left(1+\exp \left\{\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{p}\right\|^{2}-\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{n}\right\|^{2}\right\}\right)
\]
上式即 relative distance comparisong for person reidentification
An Iterative Optimization Algorithm
- 初值:
- \(O_i=\{O_i = (x^p_i, x^n_i)\},\quad \epsilon \gt 0\)
- \(\mathbf{w}_{0} \longleftarrow \mathbf{0}, \quad \tilde{\mathbf{w}}_{0} \longleftarrow \mathbf{0}\)
- \(\mathbf{x}_{i}^{s, 0} \longleftarrow \mathbf{x}_{i}^{s}, s \in\{p, n\}, O^{0} \longleftarrow O\)
第\(l\)次迭代:
- 令优化目标中的项
\[a_{i}^{l+1}=\exp \left\{\sum_{j=0}^{l}\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{p, j}\right\|^{2}-\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{n, j}\right\|^{2}\right\}\]
其中\(\mathbf{x}_{i}^{p, l},\mathbf{x}_{i}^{n, l}\)为第\(l\)次迭代的差别向量,定义为
\[\mathbf{x}_{i}^{s, \ell}=\mathbf{x}_{i}^{s, l-1}-\tilde{\mathbf{w}}_{l-1} \tilde{\mathbf{w}}_{l-1}^{T} \mathbf{x}_{i}^{s, l-1}, \quad s \in\{p, n\}, i=1, \ldots,|O|\]
其中\(l \ge 1\)并且\(\tilde{\mathbf{w}}_{l-1} = \mathbf{w}_{l-1} / \|\mathbf{w}_{l-1}\|\)
(个人理解,相当于一个动量)
- 计算\(\mathbf{x}_{i}^{p, l+1},\mathbf{x}_{i}^{n, l+1}\),得到新的\(O^{l+1}\)
梯度下降法最小化目标
\[\mathbf{w}_{l+1}=\arg \min _{\mathbf{w}} r_{l+1}\left(\mathbf{w}, \mathbf{O}^{l+1}\right)\]
其中
\[r_{l+1}(\mathbf{w}, \mathbf{O}^{l+1})=\sum_{O_{i}^{l+1}} \log (1+a_{i}^{l+1} \exp \{\|\mathbf{w}^{T} \mathbf{x}_{i}^{p, l+1}\|^{2}-\|\mathbf{w}^{T} \mathbf{x}_{i}^{n, l+1}\|^{2}\})\]
\(a^{l+1}_i\)的存在考虑上一次迭代(上一组数据)的影响
注意到\(\mathbf{w}_{l-1}^{T} \mathbf{x}_{i}^{s, l}=0\),过早的迭代样本不会影响到下一次的\(w\)
出口:
\[r_{l}\left(\mathbf{w}_{l}, O^{l}\right)-r_{l+1}\left(\mathbf{w}_{l+1}, O^{l+1}\right)<\varepsilon\]
ENSEMBLE LEARNING FOR LARGE SCALE COMPUTATION
Note for Reidentification by Relative Distance Comparison的更多相关文章
- 论文笔记:Deep feature learning with relative distance comparison for person re-identification
这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...
- PatentTips - Hamming distance comparison
BACKGROUND INFORMATION In a typical data processing environment, data may be transmitted in multiple ...
- 论文阅读笔记(二)【IJCAI2016】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics
摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- (转)Let’s make a DQN 系列
Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...
- 2016CVPR论文集
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...
- CVPR2016 Paper list
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...
- Latex中画出函数文件的调用关系拓扑图
流程图,思维导图,拓扑图通常能把我们遇到的一些复杂的关系结构用图形的方式展现出来.在Latex中要想画这样的拓扑图,有一个很好用的绘图工具包 pgf/tikz . 1.pgf/tikz的安装:pgf/ ...
- ArcGIS Engine开发之旅04---ARCGIS接口详细说明
原文:ArcGIS Engine开发之旅04---ARCGIS接口详细说明 ArcGIS接口详细说明... 1 1. IField接口(esriGeoDatabase)... 2 2. ...
随机推荐
- 浏览网页隐藏服务器IP
host文件修改 notepad %windir%\system32\drivers\etc\hosts 目标IP localhost.autumn.com 可能会导致HTTP Status Code ...
- 英语orientaljasper鸡血石orientaljasper单词
鸡血石(orientaljasper),是辰砂条带的地开石,因鲜红色似鸡血的辰砂(朱砂)而得名.鸡血石含有辰砂(朱砂).石英.玉髓35%-45%.磁铁矿.赤铁矿6%-12%.辰砂约5%-8%. 鸡血石 ...
- 在Node.js中使用ejsexcel输出EXCEL文件
1.背景 在Nodejs应用程序中输出Excel,第一印象想到的一般是node-xlsx,这类插件不仅需要我们通过JS写入数据,还需要通过JS进行EXCEL显示样式的管理. 这是个大问题,不仅代码冗余 ...
- python中生成JWK(json web token)
#需要安装pyjwt import jwt import time # 使用 sanic 作为restful api 框架 def create_token(request): grant_type ...
- 微信小程序获取用户手机号 记录 (PHP)
1. 用户登录时需要获取 openid ,同时可以获取 session_key, 二者同时返回, 此时我们要将二者存储在服务端. 2. 小程序端 button 按钮拉起授权, 向api 传递 iv 和 ...
- Java下载文件解决中文乱码问题
直接上代码 /** * @desc 下载已存在的文件 */ public void sendFile(HttpServletRequest request, HttpServletResponse r ...
- SCP免密传输和SSH登录流程详解
SCP免密传输和SSH登录协议详解 在linux下开发时,经常需要登录到其他的设备上,例如虚拟机内ubuntu.树莓派等等,经常涉及到传输文件的操作,传输文件有很多中方法,如物理磁盘拷贝,基于网络的s ...
- UGUI和NGUI的优化分享
学习资料 来自UWA的分享,针对于Unity 4.x 及5.3 以下版本,Unity5.5及更高版本可能适用. 文章:UWA技术直播视频集锦 UGUI &NGUI http://blog.uw ...
- 基于SCRUM方法实践的西油计科党建设计与实现
基于SCRUM方法实践的西油计科党建设计与实现 序言 所属课程 https://edu.cnblogs.com/campus/xnsy/2019autumnsystemanalysisanddesig ...
- 【转载】python2x与3x下urlretrieve的使用
转载地址:https://blog.csdn.net/drdairen/article/details/61934598 1.python2x下urlretrieve方法: 直接将远程数据下载到本地. ...