link

Reidentification by Relative Distance Comparison

Challenge:

  • large visual appearance changes caused by variations in view angle, lighting, background clutter, and occlusion
  • 之前的大部分算法寻找独特的视觉特征。但寻找在数据规模大、现实条件不同的数据集中能够保持鲁棒性的视觉特征仍然十分困难。
  • 在不同条件下,有些特征比其他特征更重要,更稳定,使用l1-Norm等普遍采用的标准的距离评估方法并不合适,因为它们会等权重地对待所有特征。

In order to find a correc match Given a query image of a person:

  • First, a feature representation is computed from both the query and each of the gallery images.
  • Second, the distance between each pair of potential matches is measured

Solution(part 1):

  • given a set of features extracted from each person image, we seek to quantify and differentiate these features by learning the optimal distance measure that is most likely to give correct matches.
  • In essence, images of each person in a training set form a class.
  • This learning problem can be framed as a distance learning problem which always searches for a distance that minimizes intraclass distances while maximizing interclass distances.

Question:

  • the person reidentification problem has four characteristics

    • The intraclass variation can be large and, more importantly, can vary significantly for different classes
    • The interclass variation also varies drastically across different pairs of classes and there are often severe overlaps between classes in a feature space
    • In order to capture the large intra and intervariations, the number of classes is necessarily large
    • Annotating a large number of matched people across camera views is not only tedious, but also inherently limited in its usefulness
  • the data are inherently undersampled for building a representative class distribution

  • a learning model could easily be overfitted and/or be intractable if it is learned by minimizing intraclass distance and maximizing interclass distance simultaneously by brute-force

Solution(part 2):

  • formulate the problem as a relative distance comparison (RDC) problem
  • the model aims to learn an optimal distance in the sense that for a given query image, the true match is desired to be ranked higher than the wrong matches among the gallery image set
  • not easily biased by large variations across many undersampled classes as it aims to seek an optimized individual comparison between any two data points rather than comparison among data distribution boundaries or among clusters of data
  • Furthermore, in order to alleviate the large space complexity (memory usage cost) and the local optimum learning problem due to the proposed iterative algorithm for solving high-order nonlinear optimization criterion, we develop an ensemble RDC in this work

Details:

Proposed Relative Distance Comparison Learning

给出训练集\(Z={\{(\mathbf{z_i},y_i)\}}^N_{i=1}\),其中\(\mathbf{z_i}\)是表示一个视图中一个人的多维特征向量,\(y_i\)是对呀的类标签(人的ID)。

定义集合\(O_i=\{O_i = (x^p_i, x^n_i)\}\),其中\(x^p_i\)为两个相同类别样本的差异向量,\(x^n_i\)为两个不同类别样本的差异向量

\[ x=d(\mathbf{z,z'}),\quad \mathbf{z,z'} \in R^q\]

其中d是作用在矩阵每个元素上的差异函数。

给定\(O\),距离函数\(f\)以差异向量作为输入,通过相对距离比较的方式进行学习,从而使得

\[ f(x^p_i) < f(x^n_i)\]

为了描述这个优化目标,并且让它可以求导,令

\[C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)=\left(1+\exp \left\{f\left(\mathbf{x}_{i}^{p}\right)-f\left(\mathbf{x}_{i}^{n}\right)\right\}\right)^{-1}\]

假定the events of distance comparison between a relevant pair and a related irrelevant pair are independent,优化目标成为

\[\min _{f} r(f, O),\quad r(f, O)=-\log \left(\prod_{O_i} C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)\right)\]

令\(f\)为马氏距离,其中M为半正定矩阵。问题转化为学习M。
\[f(\mathbf{x})=\mathbf{x}^{T} \mathbf{M} \mathbf{x}, \quad \mathbf{M} \succeq 0\]

对矩阵M作特征分解,

\[\mathbf{M}=\mathbf{A} \mathbf{\Lambda} \mathbf{A}^{T}=\mathbf{W} \mathbf{W}^{T}, \quad \mathbf{W}=\mathbf{A} \mathbf{\Lambda}^{\frac{1}{2}}\]

其中\(\mathbf{A}\)由正交特征向量构成,而\(\mathbf{\Lambda}\)由对应特征值构成

令\(\mathbf{W}=(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}, \ldots, \mathbf{w}_{L})\)

问题转化为

\[\min _{\mathbf{W}} r(\mathbf{W}, O), \text { s.t. } \quad \mathbf{w}_{i}^{T} \mathbf{w}_{j}=0, \forall i \neq j\]

\[
r(\mathbf{W}, O)=\sum_{O_{i}} \log \left(1+\exp \left\{\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{p}\right\|^{2}-\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{n}\right\|^{2}\right\}\right)
\]

上式即 relative distance comparisong for person reidentification

An Iterative Optimization Algorithm

  • 初值:

    • \(O_i=\{O_i = (x^p_i, x^n_i)\},\quad \epsilon \gt 0\)
    • \(\mathbf{w}_{0} \longleftarrow \mathbf{0}, \quad \tilde{\mathbf{w}}_{0} \longleftarrow \mathbf{0}\)
    • \(\mathbf{x}_{i}^{s, 0} \longleftarrow \mathbf{x}_{i}^{s}, s \in\{p, n\}, O^{0} \longleftarrow O\)
  • 第\(l\)次迭代:

    • 令优化目标中的项

    \[a_{i}^{l+1}=\exp \left\{\sum_{j=0}^{l}\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{p, j}\right\|^{2}-\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{n, j}\right\|^{2}\right\}\]

    其中\(\mathbf{x}_{i}^{p, l},\mathbf{x}_{i}^{n, l}\)为第\(l\)次迭代的差别向量,定义为

    \[\mathbf{x}_{i}^{s, \ell}=\mathbf{x}_{i}^{s, l-1}-\tilde{\mathbf{w}}_{l-1} \tilde{\mathbf{w}}_{l-1}^{T} \mathbf{x}_{i}^{s, l-1}, \quad s \in\{p, n\}, i=1, \ldots,|O|\]

    其中\(l \ge 1\)并且\(\tilde{\mathbf{w}}_{l-1} = \mathbf{w}_{l-1} / \|\mathbf{w}_{l-1}\|\)

    (个人理解,相当于一个动量)

    • 计算\(\mathbf{x}_{i}^{p, l+1},\mathbf{x}_{i}^{n, l+1}\),得到新的\(O^{l+1}\)

    梯度下降法最小化目标

    \[\mathbf{w}_{l+1}=\arg \min _{\mathbf{w}} r_{l+1}\left(\mathbf{w}, \mathbf{O}^{l+1}\right)\]

    其中

    \[r_{l+1}(\mathbf{w}, \mathbf{O}^{l+1})=\sum_{O_{i}^{l+1}} \log (1+a_{i}^{l+1} \exp \{\|\mathbf{w}^{T} \mathbf{x}_{i}^{p, l+1}\|^{2}-\|\mathbf{w}^{T} \mathbf{x}_{i}^{n, l+1}\|^{2}\})\]

    \(a^{l+1}_i\)的存在考虑上一次迭代(上一组数据)的影响

    注意到\(\mathbf{w}_{l-1}^{T} \mathbf{x}_{i}^{s, l}=0\),过早的迭代样本不会影响到下一次的\(w\)

  • 出口:

\[r_{l}\left(\mathbf{w}_{l}, O^{l}\right)-r_{l+1}\left(\mathbf{w}_{l+1}, O^{l+1}\right)<\varepsilon\]

ENSEMBLE LEARNING FOR LARGE SCALE COMPUTATION

Note for Reidentification by Relative Distance Comparison的更多相关文章

  1. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

  2. PatentTips - Hamming distance comparison

    BACKGROUND INFORMATION In a typical data processing environment, data may be transmitted in multiple ...

  3. 论文阅读笔记(二)【IJCAI2016】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics

    摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: ...

  4. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  5. (转)Let’s make a DQN 系列

    Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...

  6. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  7. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  8. Latex中画出函数文件的调用关系拓扑图

    流程图,思维导图,拓扑图通常能把我们遇到的一些复杂的关系结构用图形的方式展现出来.在Latex中要想画这样的拓扑图,有一个很好用的绘图工具包 pgf/tikz . 1.pgf/tikz的安装:pgf/ ...

  9. ArcGIS Engine开发之旅04---ARCGIS接口详细说明

    原文:ArcGIS Engine开发之旅04---ARCGIS接口详细说明 ArcGIS接口详细说明... 1 1.      IField接口(esriGeoDatabase)... 2 2.    ...

随机推荐

  1. 指定细则 Small

    根据HTML5,small表示细则一类的旁注(side comment). “通常包括免责声明.注意事项.法律限制.版权信息等.有时我们还可以用它来表示署名,或者满足许可要求.” small通常是行内 ...

  2. Java深入学习(1):多线程

    多线程目的:在同一时刻有多条不同路径执行程序,提高程序运行效率 多线程应用:数据库连接池,多线程文件下载等 注意:在文件下载中使用多线程,无法提高速度 在一个进程中,一定会有主线程 从基础开始,多线程 ...

  3. springboot+MessageSource实现国际化

    1.springboot自带,不需要引入任何依赖 2.在resource下建立:i18n/messages.properties 3.在application.yml增加以下内容 spring: ap ...

  4. 使用Js将页面打印或保存为Pdf

    很久没有写前端的文章了,今天就来说说js一个比较方便的功能,打印当前页面或保存成pdf吧. js有一个原生的函数,print(),顾名思义就是打印.但是有时候我们需要打印页面某些部分,所以需要对页面进 ...

  5. linux设备驱动程序-i2c(0)-i2c设备驱动源码实现

    (基于4.14内核版本) 为了梳理清楚linux内核中的i2c实现框架,从本文开始,博主将分几个章节分别解析i2c总线在linux内核中的形成过程.匹配过程.以及设备驱动程序源码实现. 在介绍linu ...

  6. 程序员式优雅表白,教你用python代码画爱心

    还能用python代码画爱心?还有这种操作?这是什么原理? 不相信python代码可以画爱心?先来一张效果图来看看效果吧! 用python代码画爱心的思路是怎样的? 1.怎么画心形曲线 2.怎么填满心 ...

  7. 如何将VOC XML文件转化成COCO数据格式

    数据转换实在是个烦人的工作,被折磨了很久决定抽出时间整理一下,仅供参考. 在一个项目中,我需要将已有的VOC的xml标注文件转化成COCO的数据格式,为了方便理解,文章按如下顺序介绍: XML文件内容 ...

  8. 201671010406-丁家辉-实验十四 团队项目评审&课程学习总结

    实验十四 团队项目评审&课程学习总结 项目 内容 这个作业属于哪个课程 [教师博客主页链接] 这个作业的要求在哪里 [作业链接地址] 作业学习目标 (1)掌握软件项目评审会流程(2)反思总结课 ...

  9. python应用-解决现实应用题

    公鸡5元1只,母鸡3元1只,小鸡一元3只,100元买100只鸡,三种鸡各多少只 x+y+z=100 5*x+3*y+z//3=100 z%3==0 穷举法-穷尽所有的可能性找到真正的答案 for x ...

  10. abp记录2

    AbpCoreInstaller只是完成注册系统框架级的所有配置类.Abp支持自动完成符合Conventional(基于约定)的组件的注册. Conventional 的规则要通过继承IConvent ...