题目描述

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

解析

此题就是在Tarjan的板子上玩了点花样,然鹅窝这种题都写不出来,看来我还需要提升。

首先容易看出来一个强连通分量里面草是随便吃而不会出现逆行的,所以我们先缩点。

以下我们考虑缩点后的图。

这个逆行一次回到起点的处理就比较麻烦了,我们不妨把这条路拆成两部分,分别是起点1号节点所在强连通分量到逆行边起点的最长路和逆行边终点回到起点的最长路。

我到这就不知道怎么处理逆行边终点回到起点的最长路了(科技树点歪)。试想如果直接拿逆行边终点跑最长路,T是妥妥的。

一个行之有效的解决方法是建反图,然后在反图上以1号节点所在强连通分量为起点跑最长路,得到的就是原图以1号节点所在强连通分量为终点的最长路,这个其实不难理解。

而且这样并不会导致吃两次草,即两次最长路的路径发生重叠,可以用反证法简单证明,这样的情况被缩点所排除了。

因为是DAG,所以最长路是可解的,我们SPFA或者拓扑去求就行了。

注意细节,我们对1号节点所在强连通分量是统计了两次的,最后要减去一次。

参考代码

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define N 100010
#define INF 0x3f3f3f3f
#define IN freopen("data.in","r",stdin);
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
struct rec{
int next,ver;
}g[N<<1],G[N],G2[N];
int head[N],tot,headG[N],totG,headG2[N],totG2,n,m,dfn[N],low[N];
int stack[N],top,scc[N],idt,cnt,c[N],d1[N],d2[N],s;
bool ins[N],v[N];
inline void add(int x,int y)
{
g[++tot].ver=y;
g[tot].next=head[x],head[x]=tot;
}
inline void addG(int x,int y)
{
G[++totG].ver=y;
G[totG].next=headG[x],headG[x]=totG;
}
inline void addG2(int x,int y)
{
G2[++totG2].ver=y;
G2[totG2].next=headG2[x],headG2[x]=totG2;
}
inline void tarjan(int x)
{
dfn[x]=low[x]=++cnt;
stack[++top]=x,ins[x]=1;
for(int i=head[x];i;i=g[i].next){
int y=g[i].ver;
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}
else if(ins[y]) low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x]){
++idt;int y;
do{
y=stack[top--],ins[y]=0;
if(y==1) s=idt;
c[y]=idt,scc[idt]++;
}while(x!=y);
}
}
inline void spfa1()
{
memset(d1,0,sizeof(d1));
queue<int> q;
d1[s]=scc[s];q.push(s);
while(q.size()){
int x=q.front();q.pop();
v[x]=0;
for(int i=headG[x];i;i=G[i].next){
int y=G[i].ver;
if(d1[y]<d1[x]+scc[y]){
d1[y]=d1[x]+scc[y];
if(!v[y]) v[y]=1,q.push(y);
}
}
}
}
inline void spfa2()
{
memset(d2,0,sizeof(d2));
queue<int> q;
d2[s]=scc[s];q.push(s);
while(q.size()){
int x=q.front();q.pop();
v[x]=0;
for(int i=headG2[x];i;i=G2[i].next){
int y=G2[i].ver;
if(d2[y]<d2[x]+scc[y]){
d2[y]=d2[x]+scc[y];
if(!v[y]) v[y]=1,q.push(y);
}
}
}
}
int main()
{
//IN
n=read(),m=read();
for(int i=1;i<=m;++i){
int u,v;
u=read(),v=read();
add(u,v);
}
for(int i=1;i<=n;++i)
if(!dfn[i]) tarjan(i);
for(int x=1;x<=n;++x)
for(int i=head[x];i;i=g[i].next){
int y=g[i].ver;
if(c[x]==c[y]) continue;
addG(c[x],c[y]),addG2(c[y],c[x]);
}
int ans=scc[s];//注意有可能只有一个强连通分量,那答案就是他自己
spfa1();
spfa2();
for(int i=1;i<=idt;++i){
//这里利用到一个技巧,没有被SPFA标记的地方就是最长路径的终点,逆行边的起点
//这样就可以快速找出逆行边的位置并进行统计
//即逆行边是一条y->i的边,而利用反图恰恰可以快速找出所有这样的边
if(!v[i]&&d1[i]){
v[i]=1;
for(int j=headG2[i];j;j=G2[j].next){
int y=G2[j].ver;
if(!d2[y]) continue;//及时排除不可达情况
ans=max(ans,d1[i]+d2[y]-scc[s]);
}
}
}
cout<<ans<<endl;
return 0;
}

P3119 [USACO15JAN]草鉴定[SCC缩点+SPFA]的更多相关文章

  1. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  2. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  3. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  4. [Luogu P3119] [USACO15JAN]草鉴定Grass Cownoisseur (缩点+图上DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P3119 Solution 这题显然要先把缩点做了. 然后我们就可以考虑如何处理走反向边的问题. 像我这样的 ...

  5. P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  6. 洛谷P3119 USACO15JAN 草鉴定

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  7. luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  8. luogu3119/bzoj3887 草鉴定 (tarjan缩点+spfa)

    首先缩一波点,就变成了一个DAG,边权是出点的大小 那我们走到某个点的时候可能会有两种状态:已经走过反边或者没走过 于是就把一个点拆成两层(x和x+N),第二层的点表示我已经走过反边了,每层中的边和原 ...

  9. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

随机推荐

  1. 【视频开发】【计算机视觉】doppia编译之四:安装其他库、编译和运行doppia

    (与本节内容无关///////////////////////////保存图片参数为--gui.save_all_screenshots true////////////////////)  在我们安 ...

  2. poj 2775 文件结构“图"

    总时间限制: 1000ms 内存限制: 65536kB 描述 在计算机上看到文件系统的结构通常很有用.Microsoft Windows上面的"explorer"程序就是这样的一个 ...

  3. java获取当前项目路径System.getProperty("user.dir")

    System.getProperty("user.dir") 就是项目的文件夹绝对路径

  4. Visual Studio特性学习

    官方档案: https://docs.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide?view=vs-2019

  5. Block chain 1_The Long Road to Bitcoin

    The path to Bitcoin is littered with the corpses of failed attempts. I've compiled a list of about a ...

  6. FineUI window弹层设置

    需在页面先设置   <f:Window ID="Window1" runat="server" Height="600px" Widt ...

  7. Java开发笔记(一百二十八)Swing的图标

    前面提过,AWT没提供能够直接显示图像的控件,这无疑是个令人诟病的短板,因为一上来就得由程序员自己去定义新控件,对于初学者来讲很不友好.这个问题在Swing中也解决掉了,不过Swing并未提供单独的图 ...

  8. Django-02-django的命令行工具

    django-admin.py 是Django的一个用于管理任务的命令行工具,manage.py是对django-admin.py的简单包装,每一个Django Project里都会有一个mannag ...

  9. Python-14-常用模块

    一.time&datatime 在Python中,通常有这几种方式来表示时间: 时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量 ...

  10. Linux基础系统优化(二)

    SELinux功能 SELinux(Security-Enhanced Linux) 是美国国家安全局(NSA)对于强制访问控制的实现,这个功能管理员又爱又恨,大多数生产环境也是关闭的做法,安全手段使 ...