题目描述

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

解析

此题就是在Tarjan的板子上玩了点花样,然鹅窝这种题都写不出来,看来我还需要提升。

首先容易看出来一个强连通分量里面草是随便吃而不会出现逆行的,所以我们先缩点。

以下我们考虑缩点后的图。

这个逆行一次回到起点的处理就比较麻烦了,我们不妨把这条路拆成两部分,分别是起点1号节点所在强连通分量到逆行边起点的最长路和逆行边终点回到起点的最长路。

我到这就不知道怎么处理逆行边终点回到起点的最长路了(科技树点歪)。试想如果直接拿逆行边终点跑最长路,T是妥妥的。

一个行之有效的解决方法是建反图,然后在反图上以1号节点所在强连通分量为起点跑最长路,得到的就是原图以1号节点所在强连通分量为终点的最长路,这个其实不难理解。

而且这样并不会导致吃两次草,即两次最长路的路径发生重叠,可以用反证法简单证明,这样的情况被缩点所排除了。

因为是DAG,所以最长路是可解的,我们SPFA或者拓扑去求就行了。

注意细节,我们对1号节点所在强连通分量是统计了两次的,最后要减去一次。

参考代码

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define N 100010
#define INF 0x3f3f3f3f
#define IN freopen("data.in","r",stdin);
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
struct rec{
int next,ver;
}g[N<<1],G[N],G2[N];
int head[N],tot,headG[N],totG,headG2[N],totG2,n,m,dfn[N],low[N];
int stack[N],top,scc[N],idt,cnt,c[N],d1[N],d2[N],s;
bool ins[N],v[N];
inline void add(int x,int y)
{
g[++tot].ver=y;
g[tot].next=head[x],head[x]=tot;
}
inline void addG(int x,int y)
{
G[++totG].ver=y;
G[totG].next=headG[x],headG[x]=totG;
}
inline void addG2(int x,int y)
{
G2[++totG2].ver=y;
G2[totG2].next=headG2[x],headG2[x]=totG2;
}
inline void tarjan(int x)
{
dfn[x]=low[x]=++cnt;
stack[++top]=x,ins[x]=1;
for(int i=head[x];i;i=g[i].next){
int y=g[i].ver;
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}
else if(ins[y]) low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x]){
++idt;int y;
do{
y=stack[top--],ins[y]=0;
if(y==1) s=idt;
c[y]=idt,scc[idt]++;
}while(x!=y);
}
}
inline void spfa1()
{
memset(d1,0,sizeof(d1));
queue<int> q;
d1[s]=scc[s];q.push(s);
while(q.size()){
int x=q.front();q.pop();
v[x]=0;
for(int i=headG[x];i;i=G[i].next){
int y=G[i].ver;
if(d1[y]<d1[x]+scc[y]){
d1[y]=d1[x]+scc[y];
if(!v[y]) v[y]=1,q.push(y);
}
}
}
}
inline void spfa2()
{
memset(d2,0,sizeof(d2));
queue<int> q;
d2[s]=scc[s];q.push(s);
while(q.size()){
int x=q.front();q.pop();
v[x]=0;
for(int i=headG2[x];i;i=G2[i].next){
int y=G2[i].ver;
if(d2[y]<d2[x]+scc[y]){
d2[y]=d2[x]+scc[y];
if(!v[y]) v[y]=1,q.push(y);
}
}
}
}
int main()
{
//IN
n=read(),m=read();
for(int i=1;i<=m;++i){
int u,v;
u=read(),v=read();
add(u,v);
}
for(int i=1;i<=n;++i)
if(!dfn[i]) tarjan(i);
for(int x=1;x<=n;++x)
for(int i=head[x];i;i=g[i].next){
int y=g[i].ver;
if(c[x]==c[y]) continue;
addG(c[x],c[y]),addG2(c[y],c[x]);
}
int ans=scc[s];//注意有可能只有一个强连通分量,那答案就是他自己
spfa1();
spfa2();
for(int i=1;i<=idt;++i){
//这里利用到一个技巧,没有被SPFA标记的地方就是最长路径的终点,逆行边的起点
//这样就可以快速找出逆行边的位置并进行统计
//即逆行边是一条y->i的边,而利用反图恰恰可以快速找出所有这样的边
if(!v[i]&&d1[i]){
v[i]=1;
for(int j=headG2[i];j;j=G2[j].next){
int y=G2[j].ver;
if(!d2[y]) continue;//及时排除不可达情况
ans=max(ans,d1[i]+d2[y]-scc[s]);
}
}
}
cout<<ans<<endl;
return 0;
}

P3119 [USACO15JAN]草鉴定[SCC缩点+SPFA]的更多相关文章

  1. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  2. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  3. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  4. [Luogu P3119] [USACO15JAN]草鉴定Grass Cownoisseur (缩点+图上DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P3119 Solution 这题显然要先把缩点做了. 然后我们就可以考虑如何处理走反向边的问题. 像我这样的 ...

  5. P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  6. 洛谷P3119 USACO15JAN 草鉴定

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  7. luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  8. luogu3119/bzoj3887 草鉴定 (tarjan缩点+spfa)

    首先缩一波点,就变成了一个DAG,边权是出点的大小 那我们走到某个点的时候可能会有两种状态:已经走过反边或者没走过 于是就把一个点拆成两层(x和x+N),第二层的点表示我已经走过反边了,每层中的边和原 ...

  9. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

随机推荐

  1. Thread 设置 IsBackground true false 的 运行差别

    1.这是一个 后台线程,IsBackground=true,  主线程完成后,后台子线程也停止了,即使 子线程 还有没运行完,也要停止 class Program { static void Main ...

  2. Eventbus的功能

    Eventbus的功能 http://masstransit-project.com/ MassTransit is a free, open source, lightweight message ...

  3. linux U盘 硬盘 unable to mount

    转自aaa小菜鸡 出现原因: 上次文件没拷完就拔了U盘 参考: 解决Ubuntu挂载U盘失败的解决方法 Linux下无法挂载U盘 解决: 1.sudo fdisk -l列出当前系统下的文件设备 2.s ...

  4. Centos 安装mysql8

    Centos 安装mysql ,转载 https://www.cnblogs.com/funbin/p/11154784.html 1.下载mysql wget -i -c https://repo. ...

  5. C语言实现简单的计算器(加、减、乘、除)

    利用运算符做为swich  case 语句条件,实现简单程序的编写;并且对输入的运算做判断,除数为零也需做判断; #include<stdio.h> int add(int a, int ...

  6. homebrew 使用代理

    ALL_PROXY=socks5://127.0.0.1:1086 brew cask install aerial

  7. Java中Date时区的转换

    1.Date中保存的是什么?  在java中,只要我们执行 Date date = new Date(); 就可以得到当前时间.如: Date date = new Date(); System.ou ...

  8. 物流管理系统(SSM+vue+shiro)【前后台】

    一.简单介绍项目 该项目是属于毕业设计项目之一,有前台的用户下单.有司机进行接单.有管理员进行操作后台,直接进入主题 毕设.定制开发 联系QQ:761273133 登录主页: 手机号码+验证码登录 或 ...

  9. .Net 取树形结构的数据

    最近遇到了无限层级数据要读取的问题,所有就写了个. 根据当前所有父级,查询出子级内容 private void GetTypeOfWorkforTree(out List<TypeOfWorkD ...

  10. 不能在本机启动SQL Server服务错误代码126(要在协议里面禁用所有别的VIA,是怎么回事?)

    在启动数据库sql服务的时候提示[Windows 不能在 本地计算机 启动 SQL Server . 有关更多信息,查阅系统事件日志.如果这是非 Microsoft 服务,请与服务厂商联系,并参考特定 ...