【OpenYurt 深度解析】边缘网关缓存能力的优雅实现
简介: 阿里云边缘容器服务上线 1 年后,正式开源了云原生边缘计算解决方案 OpenYurt,跟其他开源的容器化边缘计算方案不同的地方在于:OpenYurt 秉持 Extending your native Kubernetes to edge 的理念,对 Kubernetes 系统零修改,并提供一键式转换原生 Kubernetes 为 OpenYurt,让原生 K8s 集群具备边缘集群能力。
作者 | 何淋波(新胜)
来源 | 阿里巴巴云原生公众号
OpenYurt:延伸原生 K8s 的能力到边缘
阿里云边缘容器服务上线 1 年后,正式开源了云原生边缘计算解决方案 OpenYurt,跟其他开源的容器化边缘计算方案不同的地方在于:OpenYurt 秉持 Extending your native Kubernetes to edge 的理念,对 Kubernetes 系统零修改,并提供一键式转换原生 Kubernetes 为 OpenYurt,让原生 K8s 集群具备边缘集群能力。
同时随着 OpenYurt 的持续演进,也一定会继续保持如下发展理念:
- 非侵入式增强 K8s
- 保持和云原生社区主流技术同步演进
OpenYurt 如何解决边缘自治问题
想要实现将 Kubernetes 系统延展到边缘计算场景,那么边缘节点将通过公网和云端连接,网络连接有很大不可控因素,可能带来边缘业务运行的不稳定因素,这是云原生和边缘计算融合的主要难点之一。
解决这个问题,需要使边缘侧具有自治能力,即当云边网络断开或者连接不稳定时,确保边缘业务可以持续运行。在 OpenYurt 中,该能力由 yurt-controller-manager 和 YurtHub 组件提供。
1. YurtHub 架构
在之前的文章中,我们详细介绍了 YurtHub 组件的能力。其架构图如下:
YurtHub 是一个带有数据缓存功能的“透明网关”,和云端网络断连状态下,如果节点或者组件重启,各个组件(kubelet/kube-proxy 等)将从 YurtHub 中获取到业务容器相关数据,有效解决边缘自治的问题。这也意味着我们需要实现一个轻量的带数据缓存能力的反向代理。
2. 第一想法
实现一个缓存数据的反向代理,第一想法就是从 response.Body 中读取数据,然后分别返回给请求 client 和本地的 Cache 模块。伪代码如下:
func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
bodyBytes, _ := ioutil.ReadAll(resp.Body)
go func() {
// cache response on local disk
cacher.Write(bodyBytes)
}
// client reads data from response
rw.Write(bodyBytes)
}
当深入思考后,在 Kubernetes 系统中,上述实现会引发下面的问题:
- 问题 1:流式数据需要如何处理(如: K8s 中的 watch 请求),意味 ioutil.ReadAll() 一次调用无法返回所有数据。即如何可以返回流数据同时又缓存流数据。
- 问题 2:同时在本地缓存数据前,有可能需要对传入的 byte slice 数据先进行清洗处理。这意味着需要修改 byte slice,或者先备份 byte slice 再处理。这样会造成内存的大量消耗,同时针对流式数据,到底申请多大的 slice 也不好处理。
3. 优雅实现探讨
针对上面的问题,我们将问题逐个抽象,可以发现更优雅的实现方法。
- 问题 1:如何对流数据同时进行读写
针对流式数据的读写(一边返回一边缓存),如下图所示,其实需要的不过是把 response.Body(io.Reader) 转换成一个 io.Reader 和一个 io.Writer。或者说是一个 io.Reader 和 io.Writer 合成一个 io.Reader。这很容易就联想到 Linux 里面的 Tee 命令。
而在 Golang 中 Tee 命令是实现就是io.TeeReader,那问题 1 的伪代码如下:
func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
// create TeeReader with response.Body and cacher
newRespBody := io.TeeReader(resp.Body, cacher)
// client reads data from response
io.Copy(rw, newRespBody)
}
通过 TeeReader 的对 Response.Body 和 Cacher 的整合,当请求 client 端从 response.Body 中读取数据时,将同时向 Cache 中写入返回数据,优雅的解决了流式数据的处理。
- 问题 2:如何在缓存前先清洗流数据
如下图所示,缓存前先清洗流数据,请求端和过滤端需要同时读取 response.Body(2 次读取问题)。也就是需要将 response.Body(io.Reader) 转换成两个 io.Reader。
也意味着问题 2 转化成:问题 1 中缓存端的 io.Writer 转换成 Data Filter 的 io.Reader。其实在 Linux 命令中也能找到类似命令,就是管道。因此问题 2 的伪代码如下:
func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
pr, pw := io.Pipe()
// create TeeReader with response.Body and Pipe writer
newRespBody := io.TeeReader(resp.Body, pw)
go func() {
// filter reads data from response
io.Copy(dataFilter, pr)
}
// client reads data from response
io.Copy(rw, newRespBody)
}
通过 io.TeeReader 和 io.PiPe,当请求 client 端从 response.Body 中读取数据时,Filter 将同时从 Response 读取到数据,优雅的解决了流式数据的 2 次读取问题。
YurtHub 实现
最后看一下 YurtHub 中相关实现,由于 Response.Body 为 io.ReadCloser,所以实现了 dualReadCloser。同时 YurtHub 可能也面临对 http.Request 的缓存,所以增加了 isRespBody 参数用于判定是否需要负责关闭 response.Body。
// https://github.com/openyurtio/openyurt/blob/master/pkg/yurthub/util/util.go#L156
// NewDualReadCloser create an dualReadCloser object
func NewDualReadCloser(rc io.ReadCloser, isRespBody bool) (io.ReadCloser, io.ReadCloser) {
pr, pw := io.Pipe()
dr := &dualReadCloser{
rc: rc,
pw: pw,
isRespBody: isRespBody,
}
return dr, pr
}
type dualReadCloser struct {
rc io.ReadCloser
pw *io.PipeWriter
// isRespBody shows rc(is.ReadCloser) is a response.Body
// or not(maybe a request.Body). if it is true(it's a response.Body),
// we should close the response body in Close func, else not,
// it(request body) will be closed by http request caller
isRespBody bool
}
// Read read data into p and write into pipe
func (dr *dualReadCloser) Read(p []byte) (n int, err error) {
n, err = dr.rc.Read(p)
if n > 0 {
if n, err := dr.pw.Write(p[:n]); err != nil {
klog.Errorf("dualReader: failed to write %v", err)
return n, err
}
}
return
}
// Close close two readers
func (dr *dualReadCloser) Close() error {
errs := make([]error, 0)
if dr.isRespBody {
if err := dr.rc.Close(); err != nil {
errs = append(errs, err)
}
}
if err := dr.pw.Close(); err != nil {
errs = append(errs, err)
}
if len(errs) != 0 {
return fmt.Errorf("failed to close dualReader, %v", errs)
}
return nil
}
在使用 dualReadCloser 时,可以在httputil.NewSingleHostReverseProxy的modifyResponse()方法中看到。代码如下:
// https://github.com/openyurtio/openyurt/blob/master/pkg/yurthub/proxy/remote/remote.go#L85
func (rp *RemoteProxy) modifyResponse(resp *http.Response) error {rambohe-ch, 10 months ago: • hello openyurt
// 省略部分前置检查
rc, prc := util.NewDualReadCloser(resp.Body, true)
go func(ctx context.Context, prc io.ReadCloser, stopCh <-chan struct{}) {
err := rp.cacheMgr.CacheResponse(ctx, prc, stopCh)
if err != nil && err != io.EOF && err != context.Canceled {
klog.Errorf("%s response cache ended with error, %v", util.ReqString(req), err)
}
}(ctx, prc, rp.stopCh)
resp.Body = rc
}
总结
OpenYurt 于 2020 年 9 月进入 CNCF 沙箱后,持续保持了快速发展和迭代,在社区同学一起努力下,目前已经开源的能力有:
- 边缘自治
- 边缘单元化管理
- 云边协同运维
- 一键式无缝转换能力
同时在和社区同学的充分讨论下,OpenYurt 社区也发布了2021 roadmap,欢迎有兴趣的同学来一起贡献。
本文为阿里云原创内容,未经允许不得转载。
【OpenYurt 深度解析】边缘网关缓存能力的优雅实现的更多相关文章
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- Kafka深度解析
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/01/02/Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅 ...
- mybatis 3.x源码深度解析与最佳实践(最完整原创)
mybatis 3.x源码深度解析与最佳实践 1 环境准备 1.1 mybatis介绍以及框架源码的学习目标 1.2 本系列源码解析的方式 1.3 环境搭建 1.4 从Hello World开始 2 ...
- Kafka深度解析(如何在producer中指定partition)(转)
原文链接:Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能 ...
- 《SEO深度解析——全面挖掘搜索引擎优化的核心秘密》
<SEO深度解析——全面挖掘搜索引擎优化的核心秘密> 基本信息 作者: 痞子瑞 出版社:电子工业出版社 ISBN:9787121224041 上架时间:2014-2-28 出版日期:201 ...
- 深度解析CNN
[1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反 ...
- Hibernate 3 深度解析--苏春波
Hibernate 3 深度解析 Hibernate 作为 Java ORM 模式的优秀开源实现, 当下已经成为一种标准,为饱受 JDBC 折磨的 Java 开发者带来了“福音.快速的版本更新,想 ...
- Feign Ribbon Hystrix 三者关系 | 史上最全, 深度解析
史上最全: Feign Ribbon Hystrix 三者关系 | 深度解析 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -25[ 博客园 总入口 ] 前言 疯狂创客圈(笔者尼恩创建的 ...
- Uber的API生命周期管理平台边缘网关(Edge Gateway)的设计实践
设计边缘网关(Edge Gateway),一个高可用和高可扩展的自助服务网关,用于配置.管理和监控 Uber 每个业务领域的 API. Uber 的 API 网关的演进 2014 年 10 月,优步开 ...
- 华为全栈AI技术干货深度解析,解锁企业AI开发“秘籍”
摘要:针对企业AI开发应用中面临的痛点和难点,为大家带来从实践出发帮助企业构建成熟高效的AI开发流程解决方案. 在数字化转型浪潮席卷全球的今天,AI技术已经成为行业公认的升级重点,正在越来越多的领域为 ...
随机推荐
- gradle安装单元测试坎坷历程
参考,欢迎点击原文:https://blog.csdn.net/qq_42815122/article/details/85395111(灵感) 自己写的用户系统要加上单元测试,加就加吧,跟着网上的好 ...
- jquery之获取某个元素上的事件
jquery的给元素绑定的事件可以用data方法取出来 通过$(element).data("events")来获取 // 比如给一个button绑定两个click事件 $(&qu ...
- 在Ubuntu14.04上安装qt5和qtcreator的 两种方式(源代码和xxxxx.run) 和我的感悟-------超级详细版
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文发布于 2014-07-25 12:21:13 ...
- clickhouse 安装和远程登录开启
一.Clickhouse的安装 1.添加yum源 yum-config-manager --add-repo http://repo.red-soft.biz/repos/clickhouse/rep ...
- 【Django】如何在类视图、普通视图单独不做CSRF校验
一.背景 在某些特定场合下,需要局部禁用CSRF校验,比如,期望整个项目都启用CSRF,但是中途遇到某一两个视图要去掉这个校验 二.方案 1.如果你写Django的路由用的类视图,那么需要这样写 在 ...
- 使用 NVIDIA CloudXR 从 Google Cloud 流式传输 VR 和 AR 内容
过去,与 VR 交互需要专用的高端工作站,以及(取决于头显).壁挂式传感器和专用物理空间.VR 中的复杂任务可能会突破传感器范围.电缆长度和空间边界的限制,使艺术家陷入困境并限制他们的行动.该解决方案 ...
- Android富文本开发
基础概念目录介绍 01.业务需求简单介绍 02.实现的方案介绍 03.异常状态下保存状态信息 04.处理软键盘回删按钮逻辑 05.在指定位置插入图片 06.在指定位置插入输入文字 07.如果对选中文字 ...
- 重新记录一下ArcGisEngine安装的过程
前言 好久不用Arcgis,突然发现想用时,有点不会安装了,所以这里记录一下安装过程. 下载Arcgis 首先,下载一个arcgis版本,我这里下的是10.1. 推荐[ gis思维(公众号)],[麻辣 ...
- MYSQL 同步到ES 如何设计架构保持一致性
简单使用某个组件很容易,但是一旦要搬到生产上就要考虑各种各样的异常,保证你方案的可靠性,可恢复性就是我们需要思考的问题.今天来聊聊我们部门在 MYSQL 同步到ES的方案设计. 在面对复杂条件查询时, ...
- objective-c之Class底层结构探索
isa 走位图 在讲 OC->Class 底层类结构之前,先看下下面这张图: 通过isa走位图 得出的结论是: 1,类,父类,元类都包含了 isa, superclass 2,对象isa指向类对 ...