本文是OFDM系统的不同QAM调制阶数的误码率与误比特率仿真,仅考虑在高斯白噪声信道下的情景,着重分析不同信噪比下的误码(符号)率性能曲线,不关心具体的调制与解调方案,仿真结果与理论的误码率曲线进行了对比。

考虑一个简单的OFDM系统,每个频域子载波承载一个QAM调制符号,在经过不同信噪比白噪声信道之后,每个QAM调制符号的解调性能如何,每个符号对应的比特解码性能如何?理论的误码性能如何?可以参考如下代码:

clc;close all;clear

%% Seting parameters
EbN0_list = 0:1:10;
Q_order_list = 2:2:10;
loopNumber = 10;
fprintf('Qm\t EbN0 \t \t EsN0 \t \t SNR_Cal \t \t ser \t\t ser_theory\t\t\t ber\t\t nloop \t\t \n');
for iQorder = 1 : length(Q_order_list)
for iEbN0 = 1 : length(EbN0_list) %% Frame structure
N_Frame = 10;
N_Symbol = 14;
N_RB = 106;
N_SC_perRB = 12;
N_SC = N_RB * N_SC_perRB;
N_Ant = 1;
N_fft_order = floor(log2(N_RB * N_SC_perRB));
N_fft = 2^(N_fft_order+1);
N_cp = N_fft/8;
EbN0 = EbN0_list(iEbN0); %% Modulation
Q_order = Q_order_list(iQorder);
Qm = 2^Q_order;
N_bit = N_Frame * N_Symbol * N_RB * N_SC_perRB * Q_order; %% Noise Calculation
SNR = EbN0 + 10 * log10(Q_order); %% Loop
for iloop = 1 :loopNumber
data_bit_in = randi([0 1], 1, N_bit);
dataSymbolsIn = bi2de(reshape(data_bit_in, Q_order, N_bit/Q_order).', 'left-msb');
dataMod = qammod(dataSymbolsIn, Qm,'UnitAveragePower', true); %% Show Constellation
%scatterplotme(dataMod) %% Resource Mapping
RE_Grid = zeros(N_RB * N_SC_perRB,N_Symbol * N_Frame);
dataMod_tmp = reshape(dataMod,N_RB * N_SC_perRB,[]); %only data
Power_Scale = 1;
RE_Grid_all = Power_Scale * dataMod_tmp; %% IFFT add CP
frame_mod_shift = ifftshift(RE_Grid_all);
ifft_data = ifft(frame_mod_shift,N_fft)*sqrt(N_fft);
%ifft_data = ifft(frame_mod_shift)*sqrt(1272);
Tx_cd = [ifft_data(N_fft-N_cp+1:end,:);ifft_data];
time_signal = reshape(Tx_cd,[],1); %% Channel
power_RE = sum(sum(abs(RE_Grid_all).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;
power_tp = sum(sum(abs(ifft_data).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame; %IFFT zero padding averages the true RE Power
N0 = power_RE .* 10.^(-SNR / 10);
white_noise_starand = 1/sqrt(2)*(randn(size(time_signal)) + 1j * randn(size(time_signal)));
TransmittedSignal = time_signal + sqrt(N0) * white_noise_starand; %% Receive and Sys
ReceivedSignal = TransmittedSignal; %% FFT and Frame
frame_recieved_parallel = reshape(ReceivedSignal, N_fft + N_cp, []);
frame_Received = frame_recieved_parallel(N_cp + 1:end,:);
frame_Grid_Received = fft(frame_Received,N_fft) / sqrt(N_fft);
RE_Grid_all_Received = fftshift(frame_Grid_Received(1 : N_SC,:)); %% Demodulation
RE_PreDeMod = reshape(RE_Grid_all_Received,[],1);
dataSymbolsOut = qamdemod(RE_PreDeMod, Qm,'UnitAveragePower', true);
data_bit_out = reshape((de2bi(dataSymbolsOut, 'left-msb')).',1,[]);
power_RE_receid = sum(sum(abs(RE_PreDeMod).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;
snr_all(iQorder,iEbN0,iloop) = 10*log10(power_RE/(power_RE_receid - power_RE));
%% Result: Ser and Ber
%Ser
sym_err = length(find(dataSymbolsOut - dataSymbolsIn));
ser_all(iQorder,iEbN0,iloop) = sym_err / length(dataSymbolsOut);
%Ber
bit_error = sum(abs(data_bit_out - data_bit_in));
ber_all(iQorder,iEbN0,iloop) = bit_error / length(data_bit_out);
end
sers = mean(ser_all,3);
snrs = mean(snr_all,3);
bers = mean(ber_all,3);
sers_theory(iQorder,iEbN0) = QAM_SER_Theory(Qm,EbN0); fprintf('%dQAM\t%f\t %f\t %f\t %e\t\t%e\t\t%e\t\t%d\t\n', Qm, EbN0, SNR,snrs(iQorder,iEbN0),sers(iQorder,iEbN0),sers_theory(iQorder,iEbN0),bers(iQorder,iEbN0),loopNumber);
end
end figure(1)
semilogy(EbN0_list, bers(1,:), 'k--+');
hold on
grid on
semilogy(EbN0_list, bers(2,:), 'r--o');
semilogy(EbN0_list, bers(3,:), 'b--x');
semilogy(EbN0_list, bers(4,:), 'g--s');
xlabel('Eb/N0,dB');
ylabel('BER');
title('BER VERS SNR');
legend('QPSK','16QAM','256QAM','1024QAM'); figure(2)
semilogy(EbN0_list, sers(1,:), 'k--+');
hold on
grid on
semilogy(EbN0_list, sers_theory(1,:), 'k-');
semilogy(EbN0_list, sers(2,:), 'r--o');
semilogy(EbN0_list, sers_theory(2,:), 'r-');
semilogy(EbN0_list, sers(3,:), 'b--x');
semilogy(EbN0_list, sers_theory(3,:), 'b-');
semilogy(EbN0_list, sers(4,:), 'g--s');
semilogy(EbN0_list, sers_theory(4,:), 'g-');
xlabel('Eb/N0,dB');
ylabel('SER');
title('SER VERS SNR');
%SML = simulation, THR = theory
legend('QPSK-SML','QPSK-THR','16QAM-SML','16QAM-THR','256QAM-SML','256QAM-THR','1024QAM-SML','1024QAM-THR');

其中用到了一个计算理论误符号率的函数:
function SER = QAM_SER_Theory(Qm,EbN0)
%Reference https://dsplog.com/2012/01/01/symbol-error-rate-16qam-64qam-256qam/
Q_order = log2(Qm);
EsN0_DB = EbN0 + 10 * log10(Q_order);
EsN0 = 10.^( EsN0_DB/ 10);
k = sqrt(3 / (2*(Qm - 1)));
k_snr = k * sqrt(EsN0);
cer = erfc(k_snr);
SER = 2*(1 - 1/sqrt(Qm))*cer - (1 - 2/sqrt(Qm) + 1/Qm) * (cer.^2);
% cer = erfc(sqrt(EsN0/2));
% SER = cer - 1/4*cer.^2;
end

计算理论误比特率的函数需要参考文献,不过观察误码率与误比特率曲线,感觉只相差一个和常数,或许和调制阶数相关?

如下给出结果:

OFDM系统各种调制阶数的QAM误码率(Symbol Error Rate)与 误比特率(Bit Error Rate)仿真结果的更多相关文章

  1. 对正交频分复用OFDM系统的理解

    OFDM系统 正交频分复用OFDM(Orthogonal Frenquency Division Multiplexing)是一种多载波调制技术. 基本思想:在发送端,它将高速串行数据经过串并变换形成 ...

  2. 多用户OFDM系统资源分配研究

    首先,OFDMA 是什么? OFDM 技术的基本原理是将无线信道划分为若干互相正交的子信道,把高速串行数据流转化为低速并行子数据流,低速并行子数据流在子信道上独立传输. OFDMA 是LTE的下行多址 ...

  3. RFID 基础/分类/编码/调制/传输

    不同频段的RFID产品会有不同的特性,本文详细介绍了无源的感应器在不同工作频率产品的特性以及主要的应用. 目前定义RFID产品的工作频率有低频.高频和甚高频的频率范围内的符合不同标准的不同的产品,而且 ...

  4. DVB-C系统中QAM调制与解调仿真

    本文简单记录一下自己学习<通信原理>的时候调试的一个仿真DVB-C(Cable,数字有线电视)系统中QAM调制和解调的程序.自己一直是研究"信源"方面的东西,所以对&q ...

  5. OFDM通信系统的MATLAB仿真(1)

    由于是第一篇博客,想先说点废话,其实自己早就想把学到的一些东西总结成文章随笔之类的供自己复习时查看的了.但是一是觉得自己学的的不够深入,总结也写不出什么很深刻的东西:二是觉得网上也有海量的资料了,需要 ...

  6. OFDM通信系统的MATLAB仿真(2)

    关于OFDM系统的MATLAB仿真实现的第二篇随笔,在第一篇中,我们讨论的是信号经过AWGN信道的情况,只用添加固定噪声功率的高斯白噪声就好了.但在实际无线信道中,信道干扰常常是加性噪声.多径衰落的结 ...

  7. OFDM正交频分复用---基础入门图示

    @(162 - 信号处理) 整理转载自:给小白图示讲解OFDM 下面以图示为主讲解OFDM,以"易懂"为第一要义. 注:下面的讨论如果不做说明,均假设为理想信道. *** 一张原理 ...

  8. CDMA与OFDM之技术比较

    频谱利用率.支持高速率多媒体服务.系统容量.抗多径信道干扰等因素是目前大多数固定宽带无线接入设备商在选择CDMA(码分多址)或OFDM(正交 频分复用)作为点到多点(PMP)的关键技术时的主要出发点. ...

  9. compared woth QPSK, what is the advantages of QAM(16QAM or 64QAM?)

    1.QPSK QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式.在数字信号的调制方式中QPSK四相移键控是目前最常用的一种卫星 ...

  10. 电感耦合非接触IC卡系统的EMI问题

    射频识别(RFID)技术近年来发展迅速,并获得了广泛应用.但作为一种无线射频技术,其电磁兼容(EMC)性能也越来越受到人们的关注.RFID涉及的频率范围甚广,包括低于135kHz.13.56MHz.4 ...

随机推荐

  1. [转帖]Nginx 反向代理解决跨域问题

    https://juejin.cn/post/6995374680114741279 编写代码两分钟,解决跨域两小时,我吐了. 如果对跨域还不了解的朋友,可以看这篇:[基础]HTTP.TCP/IP 协 ...

  2. [转帖]AMD Zen CPU 架构以及不同CPU性能大PK

    https://plantegg.github.io/2021/08/13/AMD_Zen_CPU%E6%9E%B6%E6%9E%84/ 前言 本文先介绍AMD Zen 架构,结合前一篇文章<C ...

  3. [转帖]Kafka关键参数设置

    https://www.cnblogs.com/wwcom123/p/11181680.html 生产环境中使用Kafka,参数调优非常重要,而Kafka参数众多,我们的java的Configurat ...

  4. [转帖]Linux中./configure、make、make install命令详解

    简单来说,make 是编译,make install 是安装.   总结:linux编译安装中configure.make和make install各自的作用  • ./configure是用来检测你 ...

  5. 巧用GenericObjectPool创建自定义对象池

    作者:京东物流 高圆庆 1 前言 通常一个对象创建.销毁非常耗时的时候,我们不会频繁的创建和销毁它,而是考虑复用.复用对象的一种做法就是对象池,将创建好的对象放入池中维护起来,下次再用的时候直接拿池中 ...

  6. String 中的Trim

    Trim 切除首尾指定字符 var newStr=""; char[] trimChars={'@','#','$',' '}; string strC="@Hello# ...

  7. Prompt learning 教学[案例篇]:文生文案例设定汇总,你可以扮演任意角色进行专业分析

    Prompt learning 教学[案例篇]:文生文案例设定汇总,你可以扮演任意角色进行专业分析 1.角色扮演 行为 Prompt写法 "牙医" ""我想让你 ...

  8. C++ 基于Boost.Asio实现端口映射器

    Boost.Asio 是一个功能强大的 C++ 库,用于异步编程和网络编程,它提供了跨平台的异步 I/O 操作.在这篇文章中,我们将深入分析一个使用 Boost.Asio 实现的简单端口映射服务器,该 ...

  9. 3.3 Windows驱动开发:内核MDL读写进程内存

    MDL内存读写是一种通过创建MDL结构体来实现跨进程内存读写的方式.在Windows操作系统中,每个进程都有自己独立的虚拟地址空间,不同进程之间的内存空间是隔离的.因此,要在一个进程中读取或写入另一个 ...

  10. 使用Docker部署Tomcat

    目录 使用Docker部署Tomcat 1. 获取镜像 2. 第一次启动tomcat 3.带参数启动 4.查看tomcat日志 5.时区问题 使用Docker部署Tomcat 1. 获取镜像 dock ...