深度学习框架Theano停止维护
Theano停止开发的声明地址:
https://groups.google.com/g/theano-users/c/7Poq8BZutbY/m/rNCIfvAEAwAJ
原文内容:
Dear users and developers,
After almost ten years of development, we have the regret to announce
that we will put an end to our Theano development after the 1.0 release,
which is due in the next few weeks. We will continue minimal maintenance
to keep it working for one year, but we will stop actively implementing
new features. Theano will continue to be available afterwards, as per
our engagement towards open source software, but MILA does not commit to
spend time on maintenance or support after that time frame.
The software ecosystem supporting deep learning research has been
evolving quickly, and has now reached a healthy state: open-source
software is the norm; a variety of frameworks are available, satisfying
needs spanning from exploring novel ideas to deploying them into
production; and strong industrial players are backing different software
stacks in a stimulating competition.
We are proud that most of the innovations Theano introduced across the
years have now been adopted and perfected by other frameworks. Being
able to express models as mathematical expressions, rewriting
computation graphs for better performance and memory usage, transparent
execution on GPU, higher-order automatic differentiation, for instance,
have all become mainstream ideas.
In that context, we came to the conclusion that supporting Theano is no
longer the best way we can enable the emergence and application of novel
research ideas. Even with the increasing support of external
contributions from industry and academia, maintaining an older code base
and keeping up with competitors has come in the way of innovation.
MILA is still committed to supporting researchers and enabling the
implementation and exploration of innovative (and sometimes wild)
research ideas, and we will keep working towards this goal through other
means, and making significant open source contributions to other projects.
Thanks to all of you who for helping develop Theano, and making it
better by contributing bug reports, profiles, use cases, documentation,
and support.
-- Yoshua Bengio,
Head of MILA
ChatGPT3.5翻译
亲爱的用户和开发者,
经过近十年的发展,我们很遗憾地宣布,在接下来的几周内发布1.0版本后,我们将结束对Theano的开发。我们将继续进行最低限度的维护,以确保其能够正常工作一年,但我们将停止积极实施新功能。Theano将继续可用,遵循我们对开源软件的承诺,但MILA不承诺在此时间段之后花费时间进行维护或支持。
支持深度学习研究的软件生态系统发展迅速,现在已经达到了健康状态:开源软件已成为常态;提供了各种框架,满足了从探索新颖想法到将其部署到生产中的需求;并且强大的工业参与者支持着不同的软件堆栈,形成了激烈的竞争。
我们自豪地宣布,Theano多年来引入的大部分创新现在已被其他框架采纳并完善。例如,能够将模型表达为数学表达式、重写计算图以获得更好的性能和内存使用、在GPU上透明地执行、高阶自动微分等,这些都已成为主流观念。
在这种情况下,我们得出结论:支持Theano不再是我们促进新型研究思想出现和应用的最佳方式。即使在工业界和学术界的外部贡献日益增多的情况下,维护旧代码库并与竞争对手保持一致已经阻碍了创新的发展。
MILA仍致力于支持研究人员,促进创新(有时可能是激进的)研究思想的实施和探索,并将通过其他方式继续努力实现这一目标,并向其他项目做出重大的开源贡献。
感谢所有帮助开发Theano并通过贡献错误报告、档案、用例、文档和支持使其变得更好的人们。
-- Yoshua Bengio,
MILA负责人
深度学习框架Theano停止维护的更多相关文章
- 7大python 深度学习框架的描述及优缺点绍
Theano https://github.com/Theano/Theano 描述: Theano 是一个python库, 允许你定义, 优化并且有效地评估涉及到多维数组的数学表达式. 它与GPUs ...
- 深度学习框架比较TensorFlow、Theano、Caffe、SciKit-learn、Keras
TheanoTheano在深度学习框架中是祖师级的存在.Theano基于Python语言开发的,是一个擅长处理多维数组的库,这一点和numpy很像.当与其他深度学习库结合起来,它十分适合数据探索.它为 ...
- 基于Theano的深度学习框架keras及配合SVM训练模型
https://blog.csdn.net/a819825294/article/details/51334397 1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch, ...
- 转:【AI每日播报】从TensorFlow到Theano:横向对比七大深度学习框架
http://geek.csdn.net/news/detail/139235 说到近期的深度学习框架,TensorFlow火的不得了,虽说有专家在朋友圈大声呼吁,不能让TensorFlow形成垄断地 ...
- 28款GitHub最流行的开源机器学习项目,推荐GitHub上10 个开源深度学习框架
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语 ...
- [深度学习大讲堂]从NNVM看2016年深度学习框架发展趋势
本文为微信公众号[深度学习大讲堂]特约稿,转载请注明出处 虚拟框架杀入 从发现问题到解决问题 半年前的这时候,暑假,我在SIAT MMLAB实习. 看着同事一会儿跑Torch,一会儿跑MXNet,一会 ...
- TensorFlow与主流深度学习框架对比
引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年 ...
- ArXiv最受欢迎开源深度学习框架榜单:TensorFlow第一,PyTorch第四
[导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.Py ...
- Reading | 《TensorFlow:实战Google深度学习框架》
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...
- tensorflow(深度学习框架)详细讲解及实战
还未完全写完,本人会一直持续更新!~ 各大深度学习框架总结和比较 各个开源框架在GitHub上的数据统计,如下表: 主流深度学习框架在各个维度的评分,如下表: Caffe可能是第一个主流的工业级深度学 ...
随机推荐
- 使用 JMX-Exporter 监控 Kafka 和 Zookeeper
JVM 默认会通过 JMX 的方式暴露基础指标,很多中间件也会通过 JMX 的方式暴露业务指标,比如 Kafka.Zookeeper.ActiveMQ.Cassandra.Spark.Tomcat.F ...
- core dump 路径定义以及监控
Core Dump 是什么? Core Dump 是指进程异常退出时,操作系统将进程的内存状态保存到文件中,这个文件就是 Core Dump 文件,中文一般翻译为"核心转储",哈, ...
- python 日志写入文件
import logging fmt = "%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s: %(message)s" ...
- 记录vue和js操作——尽管很快实现了功能,可总感觉到不爽
需求产生的原因是:后端有一些数据是从旧平台直接迁移过来的,新平台需要根据迁移过来的数据,自动生产新的数据格式. 操作符有如下几种,分项.支路和数字配合操作符可以自定义组合,例如 [0000000000 ...
- 使用selenium grid实现下发任务到远程机器,远程执行测试用例
背景: 1. UI自动化测试用例, 可能想要在不同版本.不同浏览器下执行 2. UI自动化测试用例较多的时候,耗时时间长,这个时候可以通过分散在不同的机器上执行,减少自动化测试时间 实现 通过sele ...
- 08-Linux计划任务
什么是计划任务 周期性或者定时执行某个命令或者脚本. crontab 安装 yum install crontabs #安装crontabs systemctl enable crond #开机启动 ...
- 使用 GPU 进行 Lightmap 烘焙 - 简单 demo
作者:i_dovelemon 日期:2024-06-16 主题:Lightmap, PathTracer, Compute Shader 引言 一直以来,我都对离线 bake lightmap 操作很 ...
- ZYNQ:提取PetaLinux中Linux和UBoot配置、源码
说明 默认情况下,PetaLinux在编译完成后会删除源代码,以节省硬盘空间. 在project-spec/meta-user/conf/petalinuxbsp.conf里,添加如下内容,可以保留L ...
- 『vulnhub系列』EVILBOX-ONE
『vulnhub系列』EVILBOX-ONE 下载地址: https://www.vulnhub.com/entry/evilbox-one,736/ 信息搜集: 使用nmap探测内网存活主机,发现开 ...
- yb课堂实战之订单和播放记录事务控制 《十六》
开启事务控制 启动类:@EnableTransactionManagement 业务类,或者业务方法@Transactional 默认事务的隔离级别和传播属性 启动类上加注解 Service层加注解