dropout 正则化

除了\(L2\)正则化,还有一个非常实用的正则化方法——“Dropout(随机失活)”。

假设在训练上图这样的神经网络,它存在过拟合,这就是dropout所要处理的,复制这个神经网络,dropout会遍历网络的每一层,并设置消除神经网络中节点的概率。假设网络中的每一层,每个节点都以抛硬币的方式设置概率,每个节点得以保留和消除的概率都是0.5,设置完节点概率,会消除一些节点,然后删除掉从该节点进出的连线,最后得到一个节点更少,规模更小的网络,然后用backprop方法进行训练。

这是网络节点精简后的一个样本,对于其它样本,照旧以抛硬币的方式设置概率,保留一类节点集合,删除其它类型的节点集合。对于每个训练样本,都将采用一个精简后神经网络来训练它,这种方法似乎有点怪,单纯遍历节点,编码也是随机的,可它真的有效。不过可想而知,针对每个训练样本训练规模小得多的网络,最后可能会认识到为什么要正则化网络,因为在训练规模小得多的网络。

如何实施dropout呢?方法有几种,接下来要讲的是最常用的方法,即inverted dropout(反向随机失活),出于完整性考虑,用一个三层(\(l=3\))网络来举例说明。编码中会有很多涉及到3的地方。只举例说明如何在某一层中实施dropout

首先要定义向量\(d\),\(d^{[3]}\)表示网络第三层的dropout向量:

d3 = np.random.rand(a3.shape[0],a3.shape[1])

然后看它是否小于某数,称之为keep-probkeep-prob是一个具体数字,上个示例中它是0.5,而本例中它是0.8,它表示保留某个隐藏单元的概率,此处keep-prob等于0.8,它意味着消除任意一个隐藏单元的概率是0.2,它的作用就是生成随机矩阵,如果对\(a^{[3]}\)进行因子分解,效果也是一样的。\(d^{[3]}\)是一个矩阵,每个样本和每个隐藏单元,其中\(d^{[3]}\)中的对应值为1的概率都是0.8,对应为0的概率是0.2,随机数字小于0.8。它等于1的概率是0.8,等于0的概率是0.2。

接下来要做的就是从第三层中获取激活函数,这里叫它\(a^{[3]}\),\(a^{[3]}\)含有要计算的激活函数,\(a^{[3]}\)等于上面的\(a^{[3]}\)乘以\(d^{[3]}\),a3 =np.multiply(a3,d3),这里是元素相乘,也可写为\(a3*=d3\),它的作用就是让\(d^{[3]}\)中所有等于0的元素(输出),而各个元素等于0的概率只有20%,乘法运算最终把\(d^{\left\lbrack3 \right]}\)中相应元素输出,即让\(d^{[3]}\)中0元素与\(a^{[3]}\)中相对元素归零。

如果用python实现该算法的话,\(d^{[3]}\)则是一个布尔型数组,值为truefalse,而不是1和0,乘法运算依然有效,python会把truefalse翻译为1和0,大家可以用python尝试一下。

最后,向外扩展\(a^{[3]}\),用它除以0.8,或者除以keep-prob参数。

下面解释一下为什么要这么做,为方便起见,假设第三隐藏层上有50个单元或50个神经元,在一维上\(a^{[3]}\)是50,通过因子分解将它拆分成\(50×m\)维的,保留和删除它们的概率分别为80%和20%,这意味着最后被删除或归零的单元平均有10(50×20%=10)个,现在看下\(z^{\lbrack4]}\),\(z^{[4]} = w^{[4]} a^{[3]} + b^{[4]}\),的预期是,\(a^{[3]}\)减少20%,也就是说\(a^{[3]}\)中有20%的元素被归零,为了不影响\(z^{\lbrack4]}\)的期望值,需要用\(w^{[4]} a^{[3]}/0.8\),它将会修正或弥补所需的那20%,\(a^{[3]}\)的期望值不会变,划线部分就是所谓的dropout方法。

它的功能是,不论keep-prop的值是多少0.8,0.9甚至是1,如果keep-prop设置为1,那么就不存在dropout,因为它会保留所有节点。反向随机失活(inverted dropout)方法通过除以keep-prob,确保\(a^{[3]}\)的期望值不变。

事实证明,在测试阶段,当评估一个神经网络时,也就是用绿线框标注的反向随机失活方法,使测试阶段变得更容易,因为它的数据扩展问题变少。

据了解,目前实施dropout最常用的方法就是Inverted dropout,建议大家动手实践一下。Dropout早期的迭代版本都没有除以keep-prob,所以在测试阶段,平均值会变得越来越复杂,不过那些版本已经不再使用了。

现在使用的是\(d\)向量,会发现,不同的训练样本,清除不同的隐藏单元也不同。实际上,如果通过相同训练集多次传递数据,每次训练数据的梯度不同,则随机对不同隐藏单元归零,有时却并非如此。比如,需要将相同隐藏单元归零,第一次迭代梯度下降时,把一些隐藏单元归零,第二次迭代梯度下降时,也就是第二次遍历训练集时,对不同类型的隐藏层单元归零。向量\(d\)或\(d^{[3]}\)用来决定第三层中哪些单元归零,无论用foreprop还是backprop,这里只介绍了foreprob

如何在测试阶段训练算法,在测试阶段,已经给出了\(x\),或是想预测的变量,用的是标准计数法。用\(a^{\lbrack0]}\),第0层的激活函数标注为测试样本\(x\),在测试阶段不使用dropout函数,尤其是像下列情况:

\(z^{[1]} = w^{[1]} a^{[0]} + b^{[1]}\)

\(a^{[1]} = g^{[1]}(z^{[1]})\)

\(z^{[2]} = \ w^{[2]} a^{[1]} + b^{[2]}\)

\(a^{[2]} = \ldots\)

以此类推直到最后一层,预测值为\(\hat{y}\)。

显然在测试阶段,并未使用dropout,自然也就不用抛硬币来决定失活概率,以及要消除哪些隐藏单元了,因为在测试阶段进行预测时,不期望输出结果是随机的,如果测试阶段应用dropout函数,预测会受到干扰。理论上,只需要多次运行预测处理过程,每一次,不同的隐藏单元会被随机归零,预测处理遍历它们,但计算效率低,得出的结果也几乎相同,与这个不同程序产生的结果极为相似。

Inverted dropout函数在除以keep-prob时可以记住上一步的操作,目的是确保即使在测试阶段不执行dropout来调整数值范围,激活函数的预期结果也不会发生变化,所以没必要在测试阶段额外添加尺度参数,这与训练阶段不同。

\(l=keep-prob\)

这就是dropout

神经网络优化篇:详解dropout 正则化(Dropout Regularization)的更多相关文章

  1. PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明

    PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...

  2. 走向DBA[MSSQL篇] 详解游标

    原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...

  3. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  4. CentOS 7 下编译安装lnmp之PHP篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...

  5. CentOS 7 下编译安装lnmp之MySQL篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...

  6. CentOS 7 下编译安装lnmp之nginx篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168   ...

  7. Canal:同步mysql增量数据工具,一篇详解核心知识点

    老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...

  8. java提高篇-----详解java的四舍五入与保留位

    转载:http://blog.csdn.net/chenssy/article/details/12719811 四舍五入是我们小学的数学问题,这个问题对于我们程序猿来说就类似于1到10的加减乘除那么 ...

  9. 组件--Fragment(碎片)第二篇详解

    感觉之前看的还是不清楚,重新再研究了一次 Fragment常用的三个类: android.app.Fragment 主要用于定义Fragment android.app.FragmentManager ...

  10. JavaScript基础篇详解

    全部的数据类型: 基本数据类型: undefined Number Boolean null String 复杂数据类型: object ①Undefined: >>>声明但未初始化 ...

随机推荐

  1. selenium-wire兼容selenium和requests

    背景 在工作中UI自动化中可能会需要用到API来做一些数据准备或清理的事情,那UI操作是略低效的,但API操作相对高效. 而实战课就有这样一个案例,不过那个案例是UI操作和API分开的. 极少会遇到这 ...

  2. QA|workon env后没有进入虚拟环境,但也没有报错,但cmd可以|Python虚拟环境

    问题:pycharm的terminal执行workon env后没有进入虚拟环境,但也没有报错 但cmd可以 原因:因为pycharm的terminal用的是powershell,更改为cmd,重新打 ...

  3. 在 RedHat Enterprise、CentOS 或 Fedora Linux 上安装 MongoDB

    在 RedHat Enterprise.CentOS 或 Fedora Linux 上安装 MongoDB 1.大纲 备注:采用yum安装后,所有进程将自动在/usr/bin下,如下的mongo.mo ...

  4. 对比 MyBatis 和 MyBatis-Plus 批量插入、批量更新的性能和区别

    1 环境准备 demo 地址:learn-mybatis · Sean/spring-cloud-alibaba - 码云(gitee.com) 1.1 搭建 MyBatis-Plus 环境 创建 m ...

  5. Solution -「GXOI / GZOI 2019」AND OR Sum

    Description Link. 给定一个 \(N \times N\) 的矩阵,她希望求出: 该矩阵的所有子矩阵的 \(\texttt{AND}\) 值之和(所有子矩阵 \(\texttt{AND ...

  6. 《最新出炉》系列初窥篇-Python+Playwright自动化测试-17-处理鼠标悬停

    1.简介 有些测试场景或者事件,playwright根本就没有直接提供方法去操作,而且也不可能把各种测试场景都全面覆盖提供方法去操作.比如:就像鼠标悬停,一般测试场景鼠标悬停分两种常见,一种是鼠标悬停 ...

  7. Dubbo3应用开发—Dubbo服务管理平台DubboAdmin介绍、安装、测试

    Dubbo服务管理平台 DubboAdmin的介绍 Dubbo Admin是Apache Dubbo服务治理和管理系统的一部分. Dubbo Admin提供了一套用于服务治理的Web界面,让我们可以更 ...

  8. tiptop查询通配符

    *:表示任何符合的字符,例:A*,表示要找出全部为 A 开头的资料. ?:表示任一符合的字符,例:A?,表示要找出第一码为 A,第二码为任何 字符,但总共只有二码之数据. 注:以上二功能仅可在文字字段 ...

  9. linux日常运维(一)

    - 进程管理ps.top - 任务计划crontab 进程管理 概念:进程是在自身的虚拟地址空间运行的一个单独的程序. 进程和程序区别:程序只是一个静态的命令集合,不占系统的运行资源:而进程是一个随时 ...

  10. 从基础到实践,回顾Elasticsearch 向量检索发展史

    本文分享自华为云社区<Elasticsearch向量检索的演进与变革:从基础到应用>,作者: 汀丶. 1.引言 向量检索已经成为现代搜索和推荐系统的核心组件. 通过将复杂的对象(例如文本. ...