题目链接

题目

题目描述

Trees are an important component of the natural landscape because of their prevention of erosion and the provision of a specific ather-sheltered ecosystem in and under their foliage. Trees have also been found to play an important role in producing oxygen and reducing carbon dioxide in the atmosphere, as well as moderating ground temperatures. They are also significant elements in landscaping and agriculture, both for their aesthetic appeal and their orchard crops (such as apples). Wood from trees is a common building material.

Trees also play an intimate role in many of the world's mythologies. Many scholars are interested in finding peculiar properties about trees, such as the center of a tree, tree counting, tree coloring. A(x) is one of such properties.

A(x) (accumulation degree of node x) is defined as follows:

  1. Each edge of the tree has an positive capacity.
  2. The nodes with degree of one in the tree are named terminals.
  3. The flow of each edge can't exceed its capacity.
  4. A(x) is the maximal flow that node x can flow to other terminal nodes.

Since it may be hard to understand the definition, an example is showed below:

A(1)=11+5+8=24
Details: 1->2 11
1->4->3 5
1->4->5 8(since 1->4 has capacity of 13)
A(2)=5+6=11
Details: 2->1->4->3 5
2->1->4->5 6
A(3)=5
Details: 3->4->5 5
A(4)=11+5+10=26
Details: 4->1->2 11
4->3 5
4->5 10
A(5)=10
Details: 5->4->1->2 10

The accumulation degree of a tree is the maximal accumulation degree among its nodes. Here your task is to find the accumulation degree of the given trees.

输入描述

The first line of the input is an integer T which indicates the number of test cases. The first line of each test case is a positive integer n. Each of the following n - 1 lines contains three integers x, y, z separated by spaces, representing there is an edge between node x and node y, and the capacity of the edge is z. Nodes are numbered from 1 to n.

All the elements are nonnegative integers no more than 200000. You may assume that the test data are all tree metrics.

输出描述

For each test case, output the result on a single line.

示例1

输入

1
5
1 2 11
1 4 13
3 4 5
4 5 10

输出

26

题解

知识点:树形dp。

显然树形dp,二次扫描+换根。

第一次先预处理出每个子树的流量最大值,设 \(f[u]\) 为以 \(u\) 为根的子树的流量最大值。转移方程为:

\[f[u] = \sum
\left \{
\begin{aligned}
&\min (f[v_i],w_{v_i}) & &,v_i不是叶子节点\\
&w_{v_i} & &,v_i是叶子节点
\end{aligned}
\right.
\]

第二次处理出每个点对于整棵树的最大值,设 \(ff[u]\) 为以 \(u\) 为源点的流量最大值。转移方程为:

\[ff[v] = f[v] +
\left \{
\begin{aligned}
&w_v & &,u是叶子节点\\
&\min(ff[u] - w_v, w_v) & &,v是叶子节点\\
&\min(ff[u] - \min(f[v], w_u), w_u)& &,otherwise
\end{aligned}
\right.
\]

具体原因注释里写着。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; vector<pair<int, ll>> g[200007];
ll f[200007]; void dfs1(int u, int fa) {
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dfs1(v, u);
f[u] += g[v].size() == 1 ? w : min(f[v], w);///叶子节点可以直接贡献,因此直接加
}
} void dfs2(int u, int fa) {
for (auto [v, w] : g[u]) {
if (v == fa) continue;
if (g[u].size() == 1) f[v] += w;///如果父节点是一个叶节点,可以直接贡献,不需要考虑其到其他子树流量为0
else if (g[v].size() == 1) f[v] += min(f[u] - w, w);///否则如果自己是一个叶节点,自己支路流量应该直接是w,而不能min(f[v],w)
else f[v] += min(f[u] - min(f[v], w), w);///否则大家都不是叶子节点,则总贡献=子树内贡献+min(父节点总贡献-子树实际贡献,边权)
dfs2(v, u);
}
} bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) g[i].clear(), f[i] = 0;
for (int i = 1;i < n;i++) {
int u, v, w;
cin >> u >> v >> w;
g[u].push_back({ v,w });
g[v].push_back({ u,w });
}
dfs1(1, 0);
dfs2(1, 0);
ll ans = 0;
for (int i = 1;i <= n;i++) ans = max(ans, f[i]);
cout << ans << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

NC51180 Accumulation Degree的更多相关文章

  1. poj3585 Accumulation Degree【树形DP】【最大流】

    Accumulation Degree Time Limit: 5000MS   Memory Limit: 65536K Total Submissions:3151   Accepted: 783 ...

  2. POJ3585:Accumulation Degree(换根树形dp)

    Accumulation Degree Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3425   Accepted: 85 ...

  3. poj 3585 Accumulation Degree(二次扫描和换根法)

    Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...

  4. Accumulation Degree

    #include<cstdio> #include<cstring> #define INF 0x7fffffff using namespace std; ; inline ...

  5. poj3585 Accumulation Degree[树形DP换根]

    思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...

  6. POJ 3585 Accumulation Degree

    二次扫描与换根法 用于解决无根树,对于每一个节点作为根时都要统计 做法: 1.先以任意一个节点为根,做树形DP,保存每个节点的DP值 2.然后自上而下dfs,对于每个节点考虑以他为根的最大值 #inc ...

  7. 【POJ3585】Accumulation Degree 二次扫描与换根法

    简单来说,这是一道树形结构上的最大流问题. 朴素的解法是可以以每个节点为源点,单独进行一次dp,时间复杂度是\(O(n^2)\) 但是在朴素求解的过程中,相当于每次都求解了一次整棵树的信息,会做了不少 ...

  8. POJ3585 Accumulation Degree(二次扫描与换根法)

    题目:http://poj.org/problem?id=3585 很容易想出暴力.那么就先扫一遍. 然后得到了指定一个根后每个点的子树值. 怎么转化利用一下呢?要是能找出当前点的父亲的 “ 不含当前 ...

  9. [POJ3585]Accumulation Degree

    题面 \(\text{Solution:}\) 有些题目不仅让我们做树型 \(\text{dp}\) ,而且还让我们换每个根分别做一次, 然后这样就愉快的 \(\text{TLE}\) 了,所以我们要 ...

  10. POJ3585 Accumulation Degree 【树形dp】

    题目链接 POJ3585 题解 -二次扫描与换根法- 对于这样一个无根树的树形dp 我们先任选一根进行一次树形dp 然后再扫一遍通过计算得出每个点为根时的答案 #include<iostream ...

随机推荐

  1. python 基础 | 实现微秒级计时

    搬运一个计时代码: import datetime s = datetime.datetime.now() # 开始 # do something e = datetime.datetime.now( ...

  2. Linux中使用Docker容器安装mysql,无法直接使用mysql命令?

    1.问题 如果你在 Docker 容器中运行 MySQL,你不能在宿主主机上使用 mysql --version 命令来检查 MySQL 版本,因为 MySQL 客户端工具在宿主主机上未安装. 2.解 ...

  3. 【SHELL】变量内容替换

    使用场景:变量存放的路径通常在使用时需要进行斜杠转义 WORKSPACE=`pwd` WORKSPACE=$(echo ${WORKSPACE//\//\\/})

  4. [转帖]oceanbase 的简单介绍

    English | 中文版 OceanBase Database 是一个分布式关系型数据库.完全由蚂蚁集团自主研发. OceanBase 基于 Paxos 协议以及分布式架构,实现了高可用和线性扩展. ...

  5. [转帖]TiDB Lightning 监控告警

    https://docs.pingcap.com/zh/tidb/v6.5/monitor-tidb-lightning tidb-lightning 支持使用 Prometheus 采集监控指标 ( ...

  6. 【转帖】JVM 内存模型与垃圾回收

    文章目录 1. JVM内存模型 1.1. 程序计数器 (线程私有) 1.2. Java 虚拟机栈 (线程私有) 1.3. 本地方法栈 (线程私有) 1.4. Java 堆 (线程共享) 1.5. 方法 ...

  7. 【转帖】68.记忆集(remembered set)和写屏障(write barrier)

    目录 1.记忆集(`remembered set`) 1.记忆集(remembered set) 问题:G1将堆区划分成多个region,一个region不可能是独立的,它其中存储的对象可能被其他任意 ...

  8. [转帖]Ceph优化系列(四):RocksDB 使用 ARM 64 位 CRC32C 硬件优化指令

    一.前言 CRC32(A cyclic redundancy check 32)应用于校验,为了保证数据的正确性,采用的一种检错手段. CRC32C (CRC32 Castagnoli)  与 CRC ...

  9. 【转贴】西数全新推出企业级金盘SSD:2.5寸U.2接口、最大7.68TB、96层TLC

    西数全新推出企业级金盘SSD:2.5寸U.2接口.最大7.68TB.96层TLC https://www.cnbeta.com/articles/tech/951353.htm 硬件发展日新月异 &q ...

  10. 【转贴】linux命令总结之seq命令

    linux命令总结之seq命令 https://www.cnblogs.com/ginvip/p/6351720.html 功能: seq命令用于产生从某个数到另外一个数之间的所有整数. 语法: 1 ...