题目传送门


分析

设 \(d[i][j]\) 表示 所处位置为 \(i\),跳跃能力为 \(j\) 的步数,

若 \(j\leq \sqrt{n}\),这样的状态最多有 \(n\sqrt{n}\) 个,

若 \(j>\sqrt{n}\),这样的状态最多有 \(m\sqrt{n}\) 个。

所以最多有 \((n+m)\sqrt{n}\) 个状态,用 \(bitset\) 维护是否走过即可


代码

#include <cstdio>
#include <cctype>
#include <bitset>
#include <queue>
#include <vector>
#define rr register
using namespace std;
const int N=30011;
struct rec{int x,y,z;}; queue<rec>q;
bool unvis[N]; bitset<N>v[N];
vector<int>K[N]; int n,S,T;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void Insert(int x,int y,int z){
if (!unvis[x]){
unvis[x]=1;
rr int siz=K[x].size();
for (rr int i=0;i<siz;++i){
rr int t=K[x][i];
if (!v[x][t]) v[x][t]=1,q.push((rec){x,t,z});
}
}
if (!v[x][y]) v[x][y]=1,q.push((rec){x,y,z});
}
signed main(){
n=iut();
for (rr int Y=iut();Y;--Y){
rr int x=iut()+1,y=iut();
if (S&&!T) T=x;
if (!S) S=x;
K[x].push_back(y);
}
if (S==T) return !printf("0");
Insert(S,30001,0);
while (!q.empty()){
rr rec t=q.front(); q.pop();
if (t.x-t.y==T||t.x+t.y==T)
return !printf("%d",t.z+1);
if (t.x-t.y>0) Insert(t.x-t.y,t.y,t.z+1);
if (t.x+t.y<=n) Insert(t.x+t.y,t.y,t.z+1);
}
return !printf("-1");
}

#根号分治#洛谷 3645 [APIO2015]雅加达的摩天楼的更多相关文章

  1. 洛谷P3645 [APIO2015]雅加达的摩天楼(最短路+分块)

    传送门 这最短路的建图怎么和网络流一样玄学…… 一个最朴素的想法是从每一个点向它能到达的所有点连边,边权为跳的次数,然后跑最短路(然而边数是$O(n^2)$除非自创复杂度比spfa和dijkstra还 ...

  2. 洛谷$P3645\ [APIO2015]$雅加达的摩天楼 最短路

    正解:最短路 解题报告: 传送门$QwQ$ 考虑暴力连边,发现最多有$n^2$条边.于是考虑分块 对于长度$p_i$小于等于$\sqrt(n)$的边,建立子图$d=p_i$.说下关于子图$d$的定义? ...

  3. 洛谷P3645 [APIO2015]雅加达的摩天楼

    题目描述 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N − 1.除了这 NN 座摩天楼外,雅加达市没有其他摩天楼. 有 M 只叫做 “doge” 的神 ...

  4. 洛咕 P3645 [APIO2015]雅加达的摩天楼

    暴力连边可以每个bi向i+kdi连边权是k的边. 考虑这样的优化: 然后发现显然是不行的,因为可能还没有走到一个dog的建筑物就走了这个dog的边. 然后就有一个很妙的方法--建一个新的图,和原图分开 ...

  5. bzoj 4070 [Apio2015]雅加达的摩天楼 Dijkstra+建图

    [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 644  Solved: 238[Submit][Status][D ...

  6. 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路

    [BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...

  7. BZOJ 4070:[APIO2015]雅加达的摩天楼 最短路

    4070: [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 164[Submit][Sta ...

  8. 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)

    [题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...

  9. luogu P3645 [APIO2015]雅加达的摩天楼 分块 根号分治

    LINK:雅加达的摩天楼 容易想到设\(f_{i,j}\)表示第i个\(doge\)在第j层楼的最小步数. 转移显然是bfs.值得一提的是把初始某层的\(doge\)加入队列 然后转移边权全为1不需要 ...

  10. 浅谈分治 —— 洛谷P1228 地毯填补问题 题解

    如果想看原题网址的话请点击这里:地毯填补问题 原题: 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子 ...

随机推荐

  1. 前端树形Tree数据结构使用-🤸🏻‍♂️各种姿势总结

    01.树形结构数据 前端开发中会经常用到树形结构数据,如多级菜单.商品的多级分类等.数据库的设计和存储都是扁平结构,就会用到各种Tree树结构的转换操作,本文就尝试全面总结一下. 如下示例数据,关键字 ...

  2. 逆向实战31——xhs—xs算法分析

    前言 本文章中所有内容仅供学习交流,抓包内容.敏感网址.数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请联系我立即删除! 公众号链接 目标网站 aH ...

  3. Spring Security权限控制框架使用指南

    在常用的后台管理系统中,通常都会有访问权限控制的需求,用于限制不同人员对于接口的访问能力,如果用户不具备指定的权限,则不能访问某些接口. 本文将用 waynboot-mall 项目举例,给大家介绍常见 ...

  4. 问题解决:由于找不到msvcr110.dll,无法继续执行代码

    报错 解决 下载地址:https://www.microsoft.com/zh-cn/download/details.aspx?id=30679

  5. DataGear数据可视化分析平台介绍

    DataGear 是一款开源免费的数据可视化分析平台,自由制作任何您想要的数据看板,支持接入SQL.CSV.Excel.HTTP接口.JSON等多种数据源. 系统特点: 友好的数据源接入 支持运行时接 ...

  6. 【Azure 事件中心】在Azure Function App中消费Event Hub数据,时常出现EventReceiveError

    问题描述 在Azure Function App中消费Event Hub数据,时常出现EventReceiveError:New receiver 'P3-00122a562-4fa4-7f3f-ad ...

  7. win10图标异常显示空白,WiFi图标消失等情况解决方案

    出现WiFi图标异常不显示,但是网络却正常,以下为解决方案: Win + R 快捷键调出运行框,输入%USERPROFILE%\AppData\Local,找到IconCache.db文件并删除,之后 ...

  8. CefSharp 开发触屏终端遇到的问题记录

    一.背景 最开始准备使用的 Chromely 做一个终端机项目,本来以为挺顺利的一个事情折腾了两天半.由于无法直接控制窗体的属性,最后还是切换到 .NET Framework 4.8 + CefSha ...

  9. Spring多线程事务处理

    一.背景 本文主要介绍了spring多线程事务的解决方案,心急的可以跳过上面的理论介绍分析部分直接看最终解决方案. 在我们日常的业务活动中,经常会出现大规模的修改插入操作,比如在3.0的活动赛事创建, ...

  10. 图片裁剪插件 vue-cropper [vue插件推荐]

    一个优雅的图片裁剪插件 https://www.npmjs.com/package/vue-cropper http://github.xyxiao.cn/vue-cropper/example/