• -为Softmax分类器实现完全矢量化的损失函数
  • -实现解析梯度完全矢量化的表达式
  • 使用数值梯度检查实现结果
  • 使用验证集调整学习率和正则化强度
  • 使用SGD优化损失函数
  • 可视化最终学习的权重

softmax.ipynb

库、绘图设置和数据的导入和SVM一样

Train data shape:  (49000, 3073)
Train labels shape: (49000,)
Validation data shape: (1000, 3073)
Validation labels shape: (1000,)
Test data shape: (1000, 3073)
Test labels shape: (1000,)
dev data shape: (500, 3073)
dev labels shape: (500,)

Softmax Classifier

 `cs231n/classifiers/softmax.py`
首先完成带嵌套循环的softmax_loss_naive
def softmax_loss_naive(W, X, y, reg):
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W) #创建一个与W具有相同形状的全零数组。 N = X.shape[0]
for i in range(N):
score = X[i].dot(W) #长度为C?
exp_score = np.exp(score - np.max(score)) #防止溢出
loss += -np.log(exp_score[y[i]]/np.sum(exp_score)) / N #复刻公式
#loss += (-np.log(exp_score[y[i]])+ np.log(np.sum(exp_score))) / N #展开
dexp_score = np.zeros_like(exp_score)
dexp_score[y[i]] -= 1/exp_score[y[i]]/N
dexp_score += 1 /np.sum(exp_score) / N
dscore = dexp_score *exp_score
dW += X[[i]].T.dot([dscore])
loss +=reg*np.sum(W**2)
dW += 2*reg*W
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return loss, dW

注意使用exp避免数值溢出之后要用本地梯度乘上游梯度得到梯度值。

向量化的softmax_loss_vectorized

def softmax_loss_vectorized(W, X, y, reg):

    # Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
# scores = X.dot(W)
#exp_score = np.exp(score - np.max(score))
scores -= np.max(scores, axis=1, keepdims=True)#保持dim
exp_scores = np.exp(scores) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # Compute the loss
N = X.shape[0] #有点不熟悉这个维度012的顺序
loss = np.sum(-np.log(probs[np.arange(N), y])) / N
loss += reg * np.sum(W * W) #正则化强度的系数其实无所谓?只要不太小应该效果都差不多 # Compute the gradient
dscores = probs
dscores[np.arange(N), y] -= 1
dscores /= N dW = X.T.dot(dscores)
dW += reg * W return loss, dW

超参数调试

# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of over 0.35 on the validation set. from cs231n.classifiers import Softmax
results = {}
best_val = -1
best_softmax = None ################################################################################
# TODO: #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save #
# the best trained softmax classifer in best_softmax. #
################################################################################ # Provided as a reference. You may or may not want to change these hyperparameters
learning_rates = [3e-7,4e-7,5e-7]
regularization_strengths = [0.5e4, 1e4,1.5e4,2e4] # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Iterate over all hyperparameter combinations
for lr in learning_rates:
for reg in regularization_strengths:
# Create a new Softmax classifier
softmax = Softmax() # Train the classifier on the training set
softmax.train(X_train, y_train, learning_rate=lr, reg=reg, num_iters=1000) # Evaluate the classifier on the training and validation sets
train_accuracy = np.mean(softmax.predict(X_train) == y_train)
val_accuracy = np.mean(softmax.predict(X_val) == y_val) # Save the results for this hyperparameter combination
results[(lr, reg)] = (train_accuracy, val_accuracy) # Update the best validation accuracy and best classifier
if val_accuracy > best_val:
best_val = val_accuracy
best_softmax = softmax # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val)

目前调出来比较好一点的是

lr 5.000000e-07 reg 5.000000e+03 train accuracy: 0.386000 val accuracy: 0.392000

最后看看在test上的准确率

# evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))
softmax on raw pixels final test set accuracy: 0.384000

对比一下不同步数的权重图像差异

100 500 1000

1500 3000 5000

(多整了一些)噪点的减少还是非常明显的,虽然1500之后准确率没太大区别

CS231N Assignment1 softmax 笔记的更多相关文章

  1. cs231n assignment1 KNN

    title: cs231n assignment1 KNN tags: - KNN - cs231n categories: - 机器学习 date: 2019年9月16日 17:03:13 利用KN ...

  2. 笔记:CS231n+assignment1(作业一)

    CS231n的课后作业非常的好,这里记录一下自己对作业一些笔记. 一.第一个是KNN的代码,这里的trick是计算距离的三种方法,核心的话还是python和machine learning中非常实用的 ...

  3. 【cs231n】神经网络笔记笔记2

    ) # 对数据进行零中心化(重要) cov = np.dot(X.T, X) / X.shape[0] # 得到数据的协方差矩阵 数据协方差矩阵的第(i, j)个元素是数据第i个和第j个维度的协方差. ...

  4. 【cs231n】最优化笔记

    ): W = np.random.randn(10, 3073) * 0.0001 # generate random parameters loss = L(X_train, Y_train, W) ...

  5. cs231n官方note笔记

    本文记录官方note中比较新颖和有价值的观点(从反向传播开始) 一 反向传播 1 “反向传播是一个优美的局部过程.在整个计算线路图中,每个门单元都会得到一些输入并立即计算两个东西:1. 这个门的输出值 ...

  6. [基础]斯坦福cs231n课程视频笔记(三) 训练神经网络

    目录 training Neural Network Activation function sigmoid ReLU Preprocessing Batch Normalization 权重初始化 ...

  7. 【Python 代码】CS231n中Softmax线性分类器、非线性分类器对比举例(含python绘图显示结果)

    1 #CS231n中线性.非线性分类器举例(Softmax) #注意其中反向传播的计算 # -*- coding: utf-8 -*- import numpy as np import matplo ...

  8. CS231n 2017 学习笔记01——KNN(K-Nearest Neighbors)

    本博客内容来自 Stanford University CS231N 2017 Lecture 2 - Image Classification 课程官网:http://cs231n.stanford ...

  9. 【cs231n】图像分类笔记

    前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接: ...

  10. [基础]斯坦福cs231n课程视频笔记(一) 图片分类之使用线性分类器

    线性分类器的基本模型: f = Wx Loss Function and Optimization 1. LossFunction 衡量在当前的模型(参数矩阵W)的效果好坏 Multiclass SV ...

随机推荐

  1. 云原生时代,领域驱动设计思想(DDD)如何落地?

    摘要:随着数字化世界的持续演进,软件架构设计思想在碰撞中不断优化.云原生时代的到来,加速了行业对于领域驱动设计理念(Domain-Driven Design)的实践落地诉求. 本文分享自华为云社区&l ...

  2. iOS分发证书过期或手动吊销,会影响App的下架吗?

    ​ iOS distribution发布证书过期或者被手动revoke了app会被下架吗? 在距离distribution 证书过期一个月(或被手动revoke了)的时候会受到apple的邮件 ​编辑 ...

  3. Solon 开发进阶,一、插件扩展机制

    Solon 开发进阶 一.插件扩展机制 二.体外扩展机制 三.常用配置说明 四.启动参数说明 五.全局异常订阅 像 @Tran.@Cache 之类的注解开发成果,都会希望能在所有项目中复用.Solon ...

  4. Github 自建一个 Helm Charts 库

    前言 在构建私有的 charts 仓库之前,有几个先决条件: Helm 已经安装,版本号是 v3 拥有一个 Github 账号 初始化仓库 在 github 仓库上新建一个仓库,我这里命名为 helm ...

  5. Go--记录下踩map的坑

    这两天新调个接口的时候,一直提示签名错误,但所需的时间,工号,token都是对的,完全没有头绪,卡了两天后,终于找到原因了 原因是我的校验信息,是要将时间,工号,token封装在一起成字符串,然后用m ...

  6. ME2N增强

    一.ME2N增加字段 二.结构中添加扩展字段 附加结构中添加同名这些字段时会报错,原因是MEREP_OUTTAB_DOWNPAY等结构已存在该字段,导致冲突 三.添加逻辑代码 包含文件LMEREPI0 ...

  7. AcWing 第 1 场周赛补题记录(A~C)

    比赛链接:Here AcWing 3577. 选择数字 排序,然后选取两个数组的最大值 void solve() { int n; cin >> n; vector<int>a ...

  8. CodeCraft-21 and Codeforces Round #711 (Div. 2) A~C 个人题解

    补题链接:Here 1498A. GCD Sum 题意:给定一个 gcdSum 操作:\(gcdSum(762) = gcd(762,7 + 6 + 2) = gcd(762,15) = 3\) 请问 ...

  9. 【教程】步兵 cocos2dx 加密和混淆

    文章目录 摘要 引言 正文代码加密具体步骤代码加密具体步骤测试和配置阶段IPA 重签名操作步骤 总结 参考资料 摘要 本篇博客介绍了针对 iOS 应用中的 Lua 代码进行加密和混淆的相关技术.通过对 ...

  10. 五、java操作redis

    系列导航 一.redis单例安装(linux) 二.redis主从环境搭建 三.redis集群搭建 四.redis增加密码验证 五.java操作redis --demo主方法 package com. ...