Perfect Cubes
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 15302   Accepted: 7936

Description

For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the "perfect cube" equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a,b,c,d} which satisfy this equation for a <= N.

Input

One integer N (N <= 100).

Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

Sample Input

24

Sample Output

Cube = 6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube = 18, Triple = (2,12,16)
Cube = 18, Triple = (9,12,15)
Cube = 19, Triple = (3,10,18)
Cube = 20, Triple = (7,14,17)
Cube = 24, Triple = (12,16,20)

Java AC 代码

import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
for(int i = 2; i <= n; i++)
for(int a = 2; a < i; a++)
for(int b = a; b < i; b++)
for(int c = b; c < i; c++) {
if(i*i*i == a*a*a + b*b*b + c*c*c) {
System.out.println("Cube = " + i +", Triple = (" + a + "," + b + "," + c +")");
}
}
}
}

poj 1543 Perfect Cubes (暴搜)的更多相关文章

  1. OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes

    1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...

  2. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  3. POJ 1543 Perfect Cubes

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12595   Accepted: 6707 De ...

  4. POJ 1167 The Buses 暴搜+剪枝

    思路: 先把能选的路线都预处理出来 按照能停的车的多少排个序 (剪枝1) 搜搜搜 如果当前剩的车÷当前能停车的多少+deep>=ans剪掉 (剪枝2) //By SiriusRen #inclu ...

  5. POJ 1166 The Clocks (暴搜)

    发现对这样的模拟题根本没啥思路了,本来准备用bfs的.可是结果超时了,这是參考别的人代码写的: #include <stdio.h> #include <iostream> # ...

  6. poj 3080 Blue Jeans(水题 暴搜)

    题目:http://poj.org/problem?id=3080 水题,暴搜 #include <iostream> #include<cstdio> #include< ...

  7. POJ 1945 暴搜+打表 (Or 暴搜+判重)

    思路: 呃呃 暴搜+打表 暴搜的程序::稳稳的TLE+MLE (但是我们可以用来打表) 然后我们就可以打表过了 hiahiahia 可以证明最小的那个数不会超过200(怎么证明的我也不知道),然后就直 ...

  8. [POJ 1204]Word Puzzles(Trie树暴搜&amp;AC自己主动机)

    Description Word puzzles are usually simple and very entertaining for all ages. They are so entertai ...

  9. POJ 1414 暴搜

    题意比较复杂 (但是很好理解) 大概意思是给你等边三角形(详见题目中的图). 最后一行有n个数,下一次要填的数是c. 里面预先已经填好了数字.(0为未填) 得分的标准是这个分数的连通块周围没有空的地方 ...

随机推荐

  1. cmd 查看域名对应的 IP

    1.cmd nslookup 2.输入 域名,例如:www.baidu.com

  2. 一、基础篇--1.1Java基础-equals与==的区别

    ==: ==比较的是变量内存中存放的对象的内存地址,用来判断两个对象地址是否相同,比较的是否是同一个对象. 1.两边的操作数必须是同一类型,不然编译不通过. 2.如果是基本数据类型比较,值相等则为tr ...

  3. 解决Oracle XE报错ORA-12516(oracle回话数超出限制)

    本地安装的oracleXEUniv—oracle特别版,免费用户可以自由使用,但有连接数量和存储限制. 最近遇到一个问题,当我的SSM项目连接本地数据库oracleXE后,我的navicat再连接时就 ...

  4. 匿名内部类 this.val$的问题

    一天偶尔在网上找到一个jar包,反编译后出现了如下的代码: public void defineAnonymousInnerClass(String name)  {    new Thread(na ...

  5. java:Review(J2ee)

    1.oracle: 1.1 增:insert into 删:delete from 改:update tablename set 查:select * from 1.2 聚合函数 max,min,av ...

  6. elasticsearch 修改 mapping

    Elasticsearch的mapping一旦创建,只能增加字段,而不能修改已经mapping的字段.但现实往往并非如此啊,有时增加一个字段,就好像打了一个补丁,一个可以,但是越补越多,最后自己都觉得 ...

  7. 手机app打开的web,在打开chrome浏览器

    手机app打开的web在,打开chrome浏览器 <a href='intent://#Intent;action=android.intent.action.VIEW;scheme=googl ...

  8. body标签中的相关标签

    一.内容概要 字体标签 h1~h6 <font> <u> <b> <strong> <em> <sup> <sub> ...

  9. 应用安全 - 平台 | 工具 - Centreon Web - 漏洞 - 汇总

    简介 产地 法国 用途 监控 分布 CVE-2019-16405 https://thecybergeek.co.uk/cves/2019/09/19/CVEs.html

  10. 修改Docker0网桥默认网段

    Docker--修改Docker0网桥默认网段 修改文件 /etc/docker/daemon.json 添加内容 "bip": "ip/netmask" [ ...