Perfect Cubes
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 15302   Accepted: 7936

Description

For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the "perfect cube" equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a,b,c,d} which satisfy this equation for a <= N.

Input

One integer N (N <= 100).

Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

Sample Input

24

Sample Output

Cube = 6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube = 18, Triple = (2,12,16)
Cube = 18, Triple = (9,12,15)
Cube = 19, Triple = (3,10,18)
Cube = 20, Triple = (7,14,17)
Cube = 24, Triple = (12,16,20)

Java AC 代码

import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
for(int i = 2; i <= n; i++)
for(int a = 2; a < i; a++)
for(int b = a; b < i; b++)
for(int c = b; c < i; c++) {
if(i*i*i == a*a*a + b*b*b + c*c*c) {
System.out.println("Cube = " + i +", Triple = (" + a + "," + b + "," + c +")");
}
}
}
}

poj 1543 Perfect Cubes (暴搜)的更多相关文章

  1. OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes

    1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...

  2. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  3. POJ 1543 Perfect Cubes

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12595   Accepted: 6707 De ...

  4. POJ 1167 The Buses 暴搜+剪枝

    思路: 先把能选的路线都预处理出来 按照能停的车的多少排个序 (剪枝1) 搜搜搜 如果当前剩的车÷当前能停车的多少+deep>=ans剪掉 (剪枝2) //By SiriusRen #inclu ...

  5. POJ 1166 The Clocks (暴搜)

    发现对这样的模拟题根本没啥思路了,本来准备用bfs的.可是结果超时了,这是參考别的人代码写的: #include <stdio.h> #include <iostream> # ...

  6. poj 3080 Blue Jeans(水题 暴搜)

    题目:http://poj.org/problem?id=3080 水题,暴搜 #include <iostream> #include<cstdio> #include< ...

  7. POJ 1945 暴搜+打表 (Or 暴搜+判重)

    思路: 呃呃 暴搜+打表 暴搜的程序::稳稳的TLE+MLE (但是我们可以用来打表) 然后我们就可以打表过了 hiahiahia 可以证明最小的那个数不会超过200(怎么证明的我也不知道),然后就直 ...

  8. [POJ 1204]Word Puzzles(Trie树暴搜&amp;AC自己主动机)

    Description Word puzzles are usually simple and very entertaining for all ages. They are so entertai ...

  9. POJ 1414 暴搜

    题意比较复杂 (但是很好理解) 大概意思是给你等边三角形(详见题目中的图). 最后一行有n个数,下一次要填的数是c. 里面预先已经填好了数字.(0为未填) 得分的标准是这个分数的连通块周围没有空的地方 ...

随机推荐

  1. 读取文件信息,并通过sscanf从中获取所需数据

    #include <stdio.h> #include <stdlib.h> #include <string.h> int file_length(char* f ...

  2. jQuery .delay()

    .delay() Effects > Custom .delay( duration [, queueName ] )Returns: jQuery Description: Set a tim ...

  3. Android WebView使用与JavaScript使用

    WebView基本使用 WebView是View的一个子类,可以让你在activity中显示网页. 可以在布局文件中写入WebView:比如下面这个写了一个填满整个屏幕的WebView: <?x ...

  4. MSTest/NUnit 单元测试 代码覆盖率试用 OpenCover 和ReportGenerator

    VS自带是单元测试代码覆盖率(VS自带这个是最佳选择)需要企业版才有.很蛋疼...... 1.下载安装OpenCover 和ReportGenerator. 关于这2个是干啥的百度下.简单说就是可以分 ...

  5. Jenkins发布

    右键查看图片显示全图

  6. JavaEE-实验四 HTML与JSP基础编程

    1.使用HTML的表单以及表格标签,完成以下的注册界面(验证码不做) html代码(css写于其中) <!DOCTYPE html> <html> <head> & ...

  7. three.js中物体旋转实践之房门的打开与关闭

    看这篇博客,默认你已经知道了3D模型实现三维空间内旋转的实现方式(矩阵.欧拉角.四元数). ok,下面正式切入主题,房门的打开和关闭,先上图: 正如你所看到的那样,这个“房门”已经被打开了. 一.th ...

  8. 【HTTP】三、HTTP状态保持机制(Cookie和Session)

      前面我们提到HTTP协议的特点:无连接.无状态.无连接带来的时间开销随着HTTP/1.1引入了持久连接的机制得到了解决.现在来关注其"无状态"的特点.   所谓的无状态,就是指 ...

  9. Metinfo5.1 /member/getpassword.php SQL注入

  10. PTA(Basic Level)1008.数组元素循环右移问题

    一个数组A中存有N(>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(≥0)个位置,即将A中的数据由(A0A1⋯AN−1)变换为(AN−M⋯AN−1A0A1⋯AN−M−1)(最 ...