p5405 [CTS2019]氪金手游
题目大意
题意狗屁不通
看毛子语都比看这个题面强
分析
我们假设这棵树是一个内向树
那么我们可以轻易的得到dp[x][i]表示x点子树和为i的期望
转移只需枚举当前期望大小和子树期望大小即可
但是由于边的方向不一定
所以这棵树上存在反向边
我们可以容斥有i个边不合法的情况
因此对于一个反向边要么x点加上关系合法,将子树分离的贡献
要么这个边算是不合法的
对于这种情况我们可以直接减掉贡献
因为我们知道这个贡献已经是0~i的容斥情况
而这个减号相当于*-1
可以完成容斥
复杂度O(n^2)
代码
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
const int mod = ;
int dp[][],n,m,inv[],res[],siz[];
vector<pair<int,int> >v[];
inline int pw(int x,int p){
int ans=;
while(p){
if(p&)ans=1ll*ans*x%mod;
x=1ll*x*x%mod;
p>>=;
}
return ans;
}
inline void dfs(int x,int fa){
siz[x]=;
for(int i=;i<v[x].size();i++)
if(v[x][i].fi!=fa){
int y=v[x][i].fi,z=v[x][i].se;
dfs(y,x);
for(int j=;j<=*siz[x];j++)
for(int k=;k<=*siz[y];k++){
int sum=1ll*dp[x][j]*dp[y][k]%mod;
if(z)res[j+k]=(res[j+k]+sum)%mod;
else res[j+k]=(res[j+k]-sum+mod)%mod,res[j]=(res[j]+sum)%mod;
}
siz[x]+=siz[y];
for(int j=;j<=*siz[x];j++)dp[x][j]=res[j],res[j]=;
}
for(int i=;i<=*siz[x];i++)dp[x][i]=1ll*dp[x][i]*inv[i]%mod;
}
int main(){
int i,j,k,ans=;
scanf("%d",&n);
for(i=;i<=n;i++){
int x,y,z,iv;
scanf("%d%d%d",&x,&y,&z);
iv=pw(x+y+z,mod-);
dp[i][]=1ll*x*iv%mod;
dp[i][]=2ll*y*iv%mod;
dp[i][]=3ll*z*iv%mod;
}
for(i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
v[x].pb(mp(y,));
v[y].pb(mp(x,));
}
inv[]=inv[]=;
for(i=;i<=*n;i++)inv[i]=pw(i,mod-);
dfs(,);
for(i=;i<=*n;i++)ans=(ans+dp[][i])%mod;
printf("%d\n",ans);
return ;
}
p5405 [CTS2019]氪金手游的更多相关文章
- 【题解】Luogu P5405 [CTS2019]氪金手游
原题传送门 我们珂以先考虑一条链的情况,设\(sum\)为所有\(w_i\)的总和,\(Sw_i\)表示\(\sum_{j=i}^nw_i\) \[1 \rightarrow 2 \rightarro ...
- [CTS2019]氪金手游
[CTS2019]氪金手游 各种情况加在一起 先考虑弱化版:外向树,wi确定 i合法的概率就是wi/sw sw表示子树的w的和,和子树外情况无关 这些概率乘起来就是最终合法的概率 如果都是外向树, f ...
- LOJ3124 CTS2019 氪金手游 概率、容斥、树形DP
传送门 D2T3签到题可真是IQ Decrease,概率独立没想到然后就20pts滚粗了 注意题目是先对于所有点rand一个权值\(w\)然后再抽卡. 先考虑给出的关系是一棵外向树的情况.那么我们要求 ...
- [LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)
先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即 ...
- 题解-CTS2019氪金手游
Problem \(\mathtt {loj-3124}\) 题意概要:给定 \(n\) 个点,\(w_i\) 分别有 \(p_{i,1},p_{i,2},p_{i,3}\) 的概率取 \(1,2,3 ...
- Luogu5405 CTS2019氪金手游(容斥原理+树形dp)
考虑外向树怎么做.显然设f[i][j]为i子树中出现权值和为j的合法方案的概率,转移做树形背包即可. 如果树上只有一条反向边,显然可以先不考虑该边计算概率,再减去将整棵树看做外向树的概率.于是考虑容斥 ...
- [CTS2019]氪金手游(容斥+树形背包DP)
降智好题.本蒟蒻VP时没想到怎么做被题面迷惑了,只会20分的“好”成绩.简直自闭了. 首先显然度为0的点是白给的,根据等比数列求和公式即可求得.然后考虑这个树如果是一颗外向树,就是每个点先父亲再自己. ...
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- 【CTS2019】氪金手游(动态规划)
[CTS2019]氪金手游(动态规划) 题面 LOJ 洛谷 题解 首先不难发现整个图构成的结构是一棵树,如果这个东西是一个外向树的话,那么我们在意的只有这棵子树内的顺序关系,子树外的关系与这棵子树之间 ...
随机推荐
- 应用安全 - 路由器 - D-LINK - 漏洞汇总
D-Link D-Link DSL-2750B任意命令执行漏洞 CVE-2019-16920 影响范围 DIR- DIR-866L DIR- DHP- CVE-2017-7405 Date 类型 嗅探 ...
- java 集合基础(适用单线程)
1.集合树状: Collection ├List │├LinkedList │├ArrayList │└Vector │ └Stack └Set │├HashSet │├TreeSet │├Linke ...
- java 泛型深入
1.<? extends E> <? extends E> 是 Upper Bound(上限) 的通配符,用来限制元素的类型的上限. 赋值 List<? extend ...
- Log4net使用(一)
转自:http://blog.csdn.net/much0726/article/details/3725563 转自:https://q.cnblogs.com/q/52302/ log4net,既 ...
- Struts2入门1
Struts2的概述: Struts2是应用在Javaee三层结构中的web层.Struts2是在Struts1和webwork的基础之上发展的全新的框架.在没有使用Struts2之前,进行web层的 ...
- PHP中的异常和错误(转载)
博客好久没有更新了,实在惭愧,最近在忙人生大事,哈哈!这段时间没有看什么新的东西,结合项目中遇到的PHP异常处理问题,我又重新梳理了之前模糊的概念,希望对大家理解PHP异常处理有所帮助. 请一定要注意 ...
- 【mysql】select子句顺序
sleect…from (1)where (2)group by (3)having (4)order by (5)limit
- swiper和tab相结合
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 使用Kafka的一些简单介绍: 1集群 2原理 3 术语
目录 第一节 Kafka 集群 Kafka 集群搭建 Kafka 集群快速搭建 第二节 集群管理工具 集群管理工具 集群 Issues 第三节 使用命令操纵集群 第四节 Kafka 术语说明 第五节 ...
- HBase HA分布式集群搭建
HBase HA分布式集群搭建部署———集群架构 搭建之前建议先学习好HBase基本构架原理:https://www.cnblogs.com/lyywj170403/p/9203012.html 集群 ...