题意:有四种数字,现在有若干个限制条件:每个区间中不同的数字种类必须是多少种,问合法的方案数。

思路: 定义 dp[i][j][k][t] 代表填完前 t 个位置后,{0,1,2,3} 这 4 个数字最后一次出现的位置, 排序后为 i,j,k,t(i < j < k < t) 的方案数目,则按照第 t+1 位的数字的四种选择,可以得 到四种转移。 对于限制可以按照限制区间的右端点分类,求出 dp[i][j][k][t] 后,找到所有以 t 为区间 右端点的限制条件,如果当前状态不满足所有限制条件则不合法,不再向后转移。 总时间复杂度 O(n4)。滚动一维,空间复杂度 O(n3)

代码:

#include <bits/stdc++.h>
#define pii pair<int, int>
using namespace std;
const int maxn = 101;
const int mod = 998244353;
int dp[2][maxn][maxn][maxn];
vector<pii> re[maxn];
int main() {
int T, x, y, z, n, m;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
re[i].clear();
for (int i = 1; i <= n; i++)
re[i].clear();
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &x, &y, &z);
re[y].push_back(make_pair(x, z));
}
for (int i = 0; i < 2; i++) {
for (int j = 0; j <= n; j++)
for (int k = 0; k <= n; k++)
for (int t = 0; t <= n; t++)
dp[i][j][k][t] = 0;
}
for (int j = 0; j <= n; j++)
for (int k = 0; k <= j; k++)
for (int t = 0; t <= k; t++)
dp[0][j][k][t] = 0;
dp[0][0][0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= i; j++)
for (int k = 0; k <= j; k++)
for (int t = 0; t <= k; t++)
dp[i & 1][j][k][t] = 0;
for (int j = 0; j <= i; j++)
for (int k = 0; k <= j; k++)
for (int t = 0; t <= k; t++) {
int p = (i & 1) ^ 1;
dp[i & 1][j][k][t] = (dp[i & 1][j][k][t] + dp[p][j][k][t]) % mod;
dp[i & 1][i - 1][k][t] = (dp[i & 1][i - 1][k][t] + dp[p][j][k][t]) % mod;
dp[i & 1][i - 1][j][t] = (dp[i & 1][i - 1][j][t] + dp[p][j][k][t]) % mod;
dp[i & 1][i - 1][j][k] = (dp[i & 1][i - 1][j][k] + dp[p][j][k][t]) % mod;
}
for (int j = 0; j <= i; j++)
for (int k = 0; k <= j; k++)
for (int t = 0; t <= k; t++) {
for (int t1 = 0; t1 < re[i].size(); t1++) {
if(1 + (j >= re[i][t1].first) + (k >= re[i][t1].first) + (t >= re[i][t1].first) != re[i][t1].second) {
dp[i & 1][j][k][t] = 0;
}
}
}
}
int ans = 0;
for (int i = 0; i <= n; i++)
for (int j = 0; j <= i; j++)
for (int k = 0; k <= j; k++)
ans = (ans + dp[n & 1][i][j][k]) % mod;
printf("%d\n", ans);
}
}

  

2019HDU多校第一场 BLANK DP的更多相关文章

  1. 2019HDU多校第一场1001 BLANK (DP)(HDU6578)

    2019HDU多校第一场1001 BLANK (DP) 题意:构造一个长度为n(n<=10)的序列,其中的值域为{0,1,2,3}存在m个限制条件,表示为 l r x意义为[L,R]区间里最多能 ...

  2. [2019HDU多校第一场][HDU 6578][A. Blank]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6578 题目大意:长度为\(n\)的数组要求分别填入\(\{0,1,2,3\}\)四个数中的任意一个,有 ...

  3. [2019HDU多校第一场][HDU 6580][C. Milk]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6580 题目大意:\(n\times m\)大小的方格上有\(k\)瓶水,喝完每瓶水都需要一定的时间.初 ...

  4. [2019HDU多校第一场][HDU 6584][G. Meteor]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6584 题目大意:求所有满足\(0<\frac{p}{q}\leq1, gcd(p,q)=1,p\ ...

  5. [2019HDU多校第一场][HDU 6590][M. Code]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6590 题目大意(来自队友):二维平面上有\(n\)个点,每个点要么是黑色要么是白色,问能否找到一条直线 ...

  6. [2019HDU多校第一场][HDU 6588][K. Function]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6588 题目大意:求\(\sum_{i=1}^{n}gcd(\left \lfloor \sqrt[3] ...

  7. 2019HDU多校第一场 String 贪心

    题意:给你一个字符串,问是否存在一个长度为m的子序列,子序列中对应字符的数目必须在一个范围内,问是否存在这样的字符串?如果存在,输出字典序最小的那个. 思路:贪心,先构造一个序列自动机,序列自动机指向 ...

  8. 2019HDU多校第一场 6582 Path 【最短路+最大流最小割】

    一.题目 Path 二.分析 首先肯定要求最短路,然后如何确定所有的最短路其实有多种方法. 1 根据最短路,那么最短路上的边肯定是可以满足$dist[from] + e.cost = dist[to] ...

  9. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

随机推荐

  1. NodeJs初相识

    一.nodeJs简介 1.Node 是一个服务器端 JavaScript 解释器. 2.Node 的目标是帮助程序员构建高度可伸缩的应用程序,编写能够处理数万条同时连接到一个物理机的连接代码.处理高并 ...

  2. 【LeetCode】链表 linked list(共34题)

    [2]Add Two Numbers (2018年11月30日,第一次review,ko) 两个链表,代表两个整数的逆序,返回一个链表,代表两个整数相加和的逆序. Example: Input: ( ...

  3. Git 协作:Fetch Pull Push Branch Remote Rebase Cherry-pick相关

    前言 学习git的时候,我们首先学习的是最常用的,自己独立开发Software时用的命令: git init //初始化git仓库 git add <file_name> //将文件添加到 ...

  4. Mongodb Capped Collection集合

    MongoDB 固定集合(Capped Collections)是性能出色且有着固定大小的集合,对于大小固定,我们可以想象其就像一个环形队列,当集合空间用完后,再插入的元素就会覆盖最初始的头部的元素! ...

  5. 百度MIP技术快速入门(上)

    前言 「本文假定读者已经有初级的前端开发知识,包括HTML.CSS.」 百度在一年前推出了称为 MIP(Mobile Instant Pages)的前端开发组件,主要目的是加速移动端网页的显示.MIP ...

  6. ConcurrentSkipListMap--跳表的简单使用

    import java.util.Map; import java.util.concurrent.ConcurrentSkipListMap; /** * 跳表的使用 */ public class ...

  7. 3.自定义返回json格式的数据给前台(自定义Controller类中的Json方法)

    在mvc的项目中,我们前台做一些操作时,后台要返回一些结果给前台,这个时候我们就需要有一个状态来标识到底是什么类型的错误, 例如: 执行删除的时候,如果操作成功(1行受影响),我们需要返回状态为1并输 ...

  8. HTTP协议-Cookie和Session详解

    前言: 会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的跟踪技术就是Cookie和Session. Cookie通过在客户端记录信息确定用户身份,Session通过在 ...

  9. 51nod 1384:全排列(STL)

    题目链接 记住next_permutation函数的用法,另外string在这里比char[]慢好多啊.. //#include<bits/stdc++.h> //using namesp ...

  10. excel 中相乘函数

    excel  中相乘函数   “PRODUCT”并且是公式的框框,格式要是 常规,不能是文本