Solution:

​ 这题可以分为两个部分,

​ 一个部分为处理出每个点最大的金条数与最小的金条数,记为 \([Min_i, Max_i]\)

​ 第二部分为对于 \(n\) 个变量 \(x_i\in[Min_i, Max_i]\cup \mathbb {Z}\),计算选出 \(B\) 个前 \(A\) 大变量的方案数。

​ 对于两个点 u->v ,如果有 u 的人 i (有金条)v 的人 j 满足 \(i\equiv j(\text{mod }\gcd(S_u, S_v))\) ,那么 i 就可以给 j 假金条。

​ 同理,对于一条路径 u->...->vg 为其 \(\gcd\) ,那么只要满足 \(i \equiv j(\text{mod }g)\) ,那么 i 就可以给 j 假金条。

​ 所以对于一个强连通分量中,有金条的人就会满足 \(i\equiv j(\text{mod } g)\) ,j 为每个点有金条的人,g为整个强连通分量的 \(\gcd\) 。

​ 枚举一个点有金条的人,这样就可以 \(O(\text{金条数目})\) 求出每一个强连通分量的金条拥有状态。

​ 由竞赛图的性质,缩点后的竞赛图还是竞赛图,而且会长这个样子:

​ 即每个点都向它后面连边,显然我们为了让金条数量最大化就是按照拓扑序依次算点的贡献,这样算出来每个强连通分量的金条数假设为 Mx 那么每个点u拥有的金条数就是\(\frac{S_uMx}{g}\)。

​ 接下来就考虑怎么计数,为了不算重,枚举 u 为B中最小的点,然后统计出 \(Max_u<Min_i\) 的数量 \(cnt_1\),以及 \(Max_i\geq Max_u\geq Min_i\) 的数量 \(cnt_2\),那么再枚举在 \(cnt_2\)个中选j个,给答案加上 \({~cnt_2~\choose j}{~cnt_1~\choose B - 1 - j}\)。

#include <iostream>
#include <cstdio>
#include <set>
#include <algorithm>
#include <vector>
#define LL long long
using namespace std;
const int maxn = 5003;
const int MOD = 1e9 + 7;
vector<int> g[maxn];
vector<bool> city[maxn];
int A, B, n;
int s[maxn], fac[maxn], ifac[maxn];
void input() {
char str[(int)(2e6) + 2];
scanf("%d %d %d", &n, &A, &B);
for (int i = 1; i <= n; ++i) {
scanf("%s", str + 1);
for (int j = 1; j <= n; ++j)
if (str[j] == '1')
g[i].push_back(j);
}
for (int i = 1; i <= n; ++i) {
scanf("%d %s", &s[i], str);
city[i].resize(s[i]);
for (int j = 0; j < s[i]; ++j)
city[i][j] = str[j] - '0';
}
}
LL qpow(LL a, LL b) {
LL res(1);
while (b) {
if (b & 1) {
res = res * a % MOD;
}
a = a * a % MOD;
b >>= 1;
}
return res;
}
void init() {
fac[0] = 1;
int N = maxn - 3;
for (int i = 1; i <= N; ++i)
fac[i] = 1ll * fac[i - 1] * i % MOD;
ifac[N] = qpow(fac[N], MOD - 2);
for (int i = N - 1; i >= 0; --i)
ifac[i] = 1ll * ifac[i + 1] * (i + 1) % MOD;
}
vector<bool> colbull[maxn];
int Gcdcol[maxn], cntbull[maxn], maxbull[maxn], minbull[maxn];
int low[maxn], dfn[maxn], dfst, col[maxn], colcnt, stk[maxn], top;
void tarjan(int u) {
dfn[u] = low[u] = ++dfst;
stk[++top] = u;
for (int i = 0; i < (int)g[u].size(); ++i) {
int v= g[u][i];
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (!col[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if (low[u] == dfn[u]) {
++colcnt;
int v;
do {
v = stk[top--];
col[v] = colcnt;
} while (u != v);
Gcdcol[colcnt] = s[u];
}
}
void solve1() {
for (int i = 1; i <= n; ++i)
if (!dfn[i])
tarjan(i);
for (int i = 1; i <= n; ++i)
Gcdcol[col[i]] = __gcd(Gcdcol[col[i]], s[i]);
for (int i = 1; i <= n; ++i) {
colbull[col[i]].resize(Gcdcol[col[i]]);
for (int j = 0; j < s[i]; ++j)
if (city[i][j] == 1) {
colbull[col[i]][j % Gcdcol[col[i]]] = 1;
}
}
vector<bool> tmp;
for (int i = colcnt; i >= 2; --i) {
int g = __gcd(Gcdcol[i], Gcdcol[i - 1]);
tmp.clear();
tmp.resize(g);
for (int j = 0; j < Gcdcol[i]; ++j)
tmp[j % g] = tmp[j % g] | colbull[i][j];
for (int j = 0; j < Gcdcol[i - 1]; ++j)
colbull[i - 1][j] = colbull[i - 1][j] | tmp[j % g];
}
for (int i = 1; i <= colcnt; ++i)
for (int j = 0; j < Gcdcol[i]; ++j)
cntbull[i] += colbull[i][j];
for (int i = 1; i <= n; ++i)
maxbull[i] = s[i] / Gcdcol[col[i]] * cntbull[col[i]];
for (int i = 1; i <= n; ++i)
for (int j = 0; j < s[i]; ++j)
minbull[i] += city[i][j];
}
LL ans;
LL combine(int n, int m) {
if (m < 0 || n < 0 || m > n) return 0;
return 1ll * fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
}
void solve2() {
for (int i = 1; i <= n; ++i) {
int cnt1 = 0, cnt2 = 0;
for (int j = 1; j <= n; ++j) {
if (i == j) continue;
if (minbull[j] > maxbull[i]) ++cnt1;
else if (maxbull[j] > maxbull[i] || (maxbull[j] == maxbull[i] and j < i)) ++cnt2;
}
if (cnt1 >= A) continue;
for (int j = min(B - 1, min(cnt2, A - 1 - cnt1)); j >= B - cnt1 - 1 && j >= 0; j--) {
ans = (1ll * ans + 1ll * combine(cnt1, B - j - 1) * combine(cnt2, j) % MOD) % MOD;
}
}
cout << ans << endl;
}
int main() {
// freopen("fake.in", "r", stdin);
// freopen("fake.out", "w", stdout);
input();
init();
solve1();
solve2();
return 0;
}

[CF804F]Fake bullions的更多相关文章

  1. [codeforces 804F. Fake bullions]

    题目大意: 传送门. 给一个n个点的有向完全图(即任意两点有且仅有一条有向边). 每一个点上有$S_i$个人,开始时其中有些人有真金块,有些人没有金块.当时刻$i$时,若$u$到$v$有边,若$u$中 ...

  2. 【Codeforces】【图论】【数量】【哈密顿路径】Fake bullions (CodeForces - 804F)

    题意 有n个黑帮(gang),每个黑帮有siz[i]个人,黑帮与黑帮之间有有向边,并形成了一个竞赛完全图(即去除方向后正好为一个无向完全图).在很多年前,有一些人参与了一次大型抢劫,参与抢劫的人都获得 ...

  3. Solution -「CF 804F」Fake bullions

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点的竞赛图,第 \(i\) 个点代表了 \(s_i\) 个人,每个人(0-based)可能有真金条.此后在 ...

  4. Fake chat script for website download

    Are you searching for free fake webchat script then you are at the right place go get download your ...

  5. fake gucci outlet perform a couple associated with things in great trust

    Based on my a lot of years of encounter within Taobao, purchase bags must go to the high reputation ...

  6. Zyxel Switch-How to block a fake DHCP server without enabling DHCP snooping?

    How to block a fake DHCP server without enabling DHCP snooping? Scenario How to block a fake DHCP se ...

  7. Codeforces Round #310 (Div. 2) B. Case of Fake Numbers 水题

    B. Case of Fake Numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  8. 在使用Fake framework的时候,为什么有一些函数没有生产mock呢?

    在使用Visual studio 2012 的Fake framework 做单元测试的时候,你会发现有一些函数没有生产Stub 或者 Shim的版本,这可能是由于Fake的一些限制导致的,但如何知道 ...

  9. fake it till you become it

    fake it till you become it_你泛起山川烟波里的不是我._百度空间 fake it till you become it

随机推荐

  1. JavaScript实现生成指定范围随机数和一个包含不重复数的随机数组

    目前JavaScript里面还没有现成的方法可以实现这个简单地需求,我们就需要自己写代码了. 在js中有个函数:Math.random() 这个函数可以生成 [0,1) 的一个随机数. 我们的简单的改 ...

  2. dotnet ef执行报错, VS 2019发布时配置项中的Entity Framework迁移项显示不出来

    VS 2019发布时配置项中的Entity Framework迁移项显示不出来 dotnet ef dbcontext list --json “无法执行,因为找不到指定的命令或文件.可能的原因包括: ...

  3. Archlinux笔记本安装手记

    最近看着Linux Mint里一揽子乱七八糟的应用和散布各处的配置文件愈发烦躁,便想体验下大名鼎鼎的Arch,网上的帖子们把Arch Linux的安装难度描述的非常可怕,但实际上跟着Wiki一步一步来 ...

  4. JuniorCTF - Web - blind

    题目链接 https://ctftime.org/task/7450 参考链接 https://github.com/Dvd848/CTFs/blob/master/2018_35C3_Junior/ ...

  5. $[WC2018]$通道(虚树,边分练习)

    \([WC2018]\)通道(虚树,边分练习) 感受码题的快感 这段时间真的是忙忙忙忙忙,省选之前还是露个脸,免得以后没机会了. 但是我感觉我的博客真的没啥人看,虽然我挺想要有人看的,但是自己真的没啥 ...

  6. 前端经典布局:Sticky footer 布局

    什么是Sticky footer布局?前端开发中大部分网站,都会把一个页面分为头部区块.内容区块.页脚区块,这也是比较.往往底部都要求能固定在屏幕的底部,而非随着文档流排布.要实现的样式可以概括如下: ...

  7. Dubbo学习-5-监控中心simpleMonitor搭建

    之前已经下载好的dubbo-admin-master源码中,有dubbo-monitor-simple工程,同理,使用maven命令打包成一个可执行的jar包: 1.进入dubbo-monitor-s ...

  8. spring boot 参数传递(spring boot 参数传数 arg0 每一个参数 arg0#{arg0},arg1 #{arg1})

    spring boot 参数传数 arg0 每一个参数 arg0#{arg0},arg1  #{arg1} @Select("select * from sys_user where nam ...

  9. 浅谈MySQL优化

    本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体 ...

  10. 用java实现文件的断点续传并发下载

    需求: 支持文件批量下载.现在有很多小图片需要批量下载,不希望在服务器打包下载. 支持大文件断点下载.比如下载10G的文件. PC端全平台支持.Windows,macOS,Linux 全浏览器支持.i ...