Description

Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.
Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2
L numbers of queues. For example, if L = 2, then they are
ff, mm, fm, mf .
If there exists a subqueue as fmf or fff, we call it
O-queue else it is a E-queue.

Your task is to calculate the number of E-queues mod M with length L by writing a program.

Input

Input a length L (0 <= L <= 10
6) and M.

Output

Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.

Sample Input

3 8
4 7
4 8

Sample Output

6
2
1 给你一个只有f和m,长度为l的字符串,让你找出满题条件的串的个数对m取余的数。如果这个串中不含fff和fmf就说这个串是满足条件的。
假设现有长度为n的串s,f(n)是s串满足条件的答案。f(n)怎么推出来捏?
如果s的最后一位为m,那么就加上f(n-1),因为在长度为n-1的满足条件的串后面加上一个m所得到的串肯定也满足条件。
如果s的最后一位为f,那么s的最后三位只有mmf和mff两种情况!继续讨论!
如果s以mmf结尾,那么加上f(n-3),因为在长度为n-3的满足条件的串后面加上一个mmf所得到的串肯定也满足条件。
那如果s以mff结尾呢?向前思考一位,倒数第四位只能是m,也就是此时s是以mmff结尾的,再加上f(n-4)岂不是美滋滋?
综上f(n)=f(n-1)+f(n-3)+f(n-4)。无耻的再盗张图...OTZ...

代码如下:
 #include <bits/stdc++.h>

 using namespace std;
const int N=;
int l,m;
struct Matrix
{
long long int mat[N][N];
}matrix;
void init()
{
memset(matrix.mat,,sizeof matrix.mat);
matrix.mat[][]=;
matrix.mat[][]=;
matrix.mat[][]=;
matrix.mat[][]=;
for (int i=;i<N;++i)
{
for (int j=;j<N;++j)
{
if (i==j+)
matrix.mat[i][j]=;
}
}
}
Matrix operator * (Matrix a,Matrix b)
{
Matrix c;
for (int i=;i<N;++i)
{
for (int j=;j<N;++j)
{
c.mat[i][j]=;
for (int k=;k<N;++k)
c.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
c.mat[i][j]%=m;
}
}
return c;
}
Matrix Pow (int n)
{
Matrix t;
if (n==)
return matrix;
if (n&)
return matrix*Pow(n-);
else
{
Matrix temp=Pow(n>>);
return temp*temp;
}
}
int main()
{
//freopen("de.txt","r",stdin);
long long int f[];
f[]=;
f[]=;
f[]=;
f[]=;
f[]=;
while (~scanf("%d%d",&l,&m))
{
init();
if (l<=)
{
printf("%lld\n",f[l]%m);
continue;
}
Matrix temp=Pow(l-);
long long int ans=;
for (int i=;i<N;++i)
{
ans += temp.mat[][i]*f[N-i];
ans%=m;
}
printf("%lld\n",ans);
}
return ;
}


hdu 2604 Queuing(推推推公式+矩阵快速幂)的更多相关文章

  1. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  2. HDU6050: Funny Function(推公式+矩阵快速幂)

    传送门 题意 利用给出的式子求\(F_{m,1}\) 分析 直接推公式(都是找规律大佬) \(n为偶数,F_{m,1}=\frac{2(2^n-1)^{m-1}}3\) \(n为奇数,F_{m,1}= ...

  3. HDU 2855 斐波那契+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...

  4. HDU 5950:Recursive sequence(矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f ...

  5. HDU 3292 【佩尔方程求解 && 矩阵快速幂】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=3292 No more tricks, Mr Nanguo Time Limit: 3000/1000 M ...

  6. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  7. HDU 2256 Problem of Precision 数论矩阵快速幂

    题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...

  8. HDU 2256 Problem of Precision (矩阵快速幂)(推算)

    Problem of Precision Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂

    题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...

随机推荐

  1. spring5源码分析系列(一)——spring5框架模块

    spring总共大约20个模块,这些模块被整合在核心容器(Core Container).AOP和设备支持.数据访问及集成.Web.报文发送.Test 6个模块集合. 组成Spring框架的每个模块集 ...

  2. 牛客小白月赛14 -A (找规律+除数取模)

    题目链接:https://ac.nowcoder.com/acm/contest/879/A 题意:有n个城市,编号1~n,k天,第一天位于城市1,要求最后一天在城市1,且相邻两天不在同一个城市,求方 ...

  3. 浅谈Linux kill命令

    傻瓜常规篇: 首先,用ps查看进程,方法如下: $ ps -ef ……smx       1822     1  0 11:38 ?        00:00:49 gnome-terminalsmx ...

  4. Mysql优化深度解析

    说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *.不使用NULL字段.合理创建索引.为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原 ...

  5. 尝试自己搭一个简单的typescript运行环境

    开发typescript项目有一些现成的脚手架,比如:typescript-library-starter,它的配置齐全,更适合用在实际项目开发上.其实在学习阶段可以自己搭建一个简单的typescri ...

  6. IE浏览器(js)new Date()带参返回NaN解决方法

    function myNewDate(str) { if(!str){ return 0; } arr=str.split(" "); d=arr[0].split("- ...

  7. Hive 教程(五)-参数配置

    配置基本操作 hive> set; 查看所有配置hive> set key: 查看某个配置hive> set key value: 设置某个配置 我们可以看到一些 hadoop 的配 ...

  8. 用css、如何让图片自动适应屏幕大小,不出现滚动条,不变形,兼容各个浏览器?急!!!

    如果是个背景图的话,定义一个div,高100%,宽100%,里面放个img<div class='bg'> <img src="images/bg.jpg" al ...

  9. oracle 安装后参数调整

    关闭11g 新特性 开归档 oracle 11g安装完成需修改:1.关闭审计alter system set audit_trail=none scope=spfile sid='*'; 防止ORA- ...

  10. wex5打包详解

    1.模式选择 模式一:主要针对是简单的运用,进行智能更新,也就是说即使服务器更新了,客户端也不会立即更新,不适合产品类型的APP. 模式二:服务器资源更新了,客户端也会立即更新. 模式三:调试模式. ...