作者:Mingqi
链接:https://www.zhihu.com/question/23277575/answer/169698662
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

要了解控制反转( Inversion of Control ), 我觉得有必要先了解软件设计的一个重要思想:依赖倒置原则(Dependency Inversion Principle )

什么是依赖倒置原则?假设我们设计一辆汽车:先设计轮子,然后根据轮子大小设计底盘,接着根据底盘设计车身,最后根据车身设计好整个汽车。这里就出现了一个“依赖”关系:汽车依赖车身,车身依赖底盘,底盘依赖轮子。

这样的设计看起来没问题,但是可维护性却很低。假设设计完工之后,上司却突然说根据市场需求的变动,要我们把车子的轮子设计都改大一码。这下我们就蛋疼了:因为我们是根据轮子的尺寸设计的底盘,轮子的尺寸一改,底盘的设计就得修改;同样因为我们是根据底盘设计的车身,那么车身也得改,同理汽车设计也得改——整个设计几乎都得改!

我们现在换一种思路。我们先设计汽车的大概样子,然后根据汽车的样子来设计车身,根据车身来设计底盘,最后根据底盘来设计轮子。这时候,依赖关系就倒置过来了:轮子依赖底盘, 底盘依赖车身, 车身依赖汽车。

这时候,上司再说要改动轮子的设计,我们就只需要改动轮子的设计,而不需要动底盘,车身,汽车的设计了。

这就是依赖倒置原则——把原本的高层建筑依赖底层建筑“倒置”过来,变成底层建筑依赖高层建筑。高层建筑决定需要什么,底层去实现这样的需求,但是高层并不用管底层是怎么实现的。这样就不会出现前面的“牵一发动全身”的情况。

控制反转(Inversion of Control) 就是依赖倒置原则的一种代码设计的思路。具体采用的方法就是所谓的依赖注入(Dependency Injection)。其实这些概念初次接触都会感到云里雾里的。说穿了,这几种概念的关系大概如下:

为了理解这几个概念,我们还是用上面汽车的例子。只不过这次换成代码。我们先定义四个Class,车,车身,底盘,轮胎。然后初始化这辆车,最后跑这辆车。代码结构如下:

这样,就相当于上面第一个例子,上层建筑依赖下层建筑——每一个类的构造函数都直接调用了底层代码的构造函数。假设我们需要改动一下轮胎(Tire)类,把它的尺寸变成动态的,而不是一直都是30。我们需要这样改:

由于我们修改了轮胎的定义,为了让整个程序正常运行,我们需要做以下改动:

由此我们可以看到,仅仅是为了修改轮胎的构造函数,这种设计却需要修改整个上层所有类的构造函数!在软件工程中,这样的设计几乎是不可维护的——在实际工程项目中,有的类可能会是几千个类的底层,如果每次修改这个类,我们都要修改所有以它作为依赖的类,那软件的维护成本就太高了。

所以我们需要进行控制反转(IoC),及上层控制下层,而不是下层控制着上层。我们用依赖注入(Dependency Injection)这种方式来实现控制反转。所谓依赖注入,就是把底层类作为参数传入上层类,实现上层类对下层类的“控制”。这里我们用构造方法传递的依赖注入方式重新写车类的定义:

这里我们再把轮胎尺寸变成动态的,同样为了让整个系统顺利运行,我们需要做如下修改:

看到没?这里我只需要修改轮胎类就行了,不用修改其他任何上层类。这显然是更容易维护的代码。不仅如此,在实际的工程中,这种设计模式还有利于不同组的协同合作和单元测试:比如开发这四个类的分别是四个不同的组,那么只要定义好了接口,四个不同的组可以同时进行开发而不相互受限制;而对于单元测试,如果我们要写Car类的单元测试,就只需要Mock一下Framework类传入Car就行了,而不用把Framework, Bottom, Tire全部new一遍再来构造Car。

这里我们是采用的构造函数传入的方式进行的依赖注入。其实还有另外两种方法:Setter传递接口传递。这里就不多讲了,核心思路都是一样的,都是为了实现控制反转

看到这里你应该能理解什么控制反转和依赖注入了。那什么是控制反转容器(IoC Container)呢?其实上面的例子中,对车类进行初始化的那段代码发生的地方,就是控制反转容器。

显然你也应该观察到了,因为采用了依赖注入,在初始化的过程中就不可避免的会写大量的new。这里IoC容器就解决了这个问题。这个容器可以自动对你的代码进行初始化,你只需要维护一个Configuration(可以是xml可以是一段代码),而不用每次初始化一辆车都要亲手去写那一大段初始化的代码。这是引入IoC Container的第一个好处。

IoC Container的第二个好处是:我们在创建实例的时候不需要了解其中的细节。在上面的例子中,我们自己手动创建一个车instance时候,是从底层往上层new的:

这个过程中,我们需要了解整个Car/Framework/Bottom/Tire类构造函数是怎么定义的,才能一步一步new/注入。

而IoC Container在进行这个工作的时候是反过来的,它先从最上层开始往下找依赖关系,到达最底层之后再往上一步一步new(有点像深度优先遍历):

这里IoC Container可以直接隐藏具体的创建实例的细节,在我们来看它就像一个工厂:

我们就像是工厂的客户。我们只需要向工厂请求一个Car实例,然后它就给我们按照Config创建了一个Car实例。我们完全不用管这个Car实例是怎么一步一步被创建出来。

实际项目中,有的Service Class可能是十年前写的,有几百个类作为它的底层。假设我们新写的一个API需要实例化这个Service,我们总不可能回头去搞清楚这几百个类的构造函数吧?IoC Container的这个特性就很完美的解决了这类问题——因为这个架构要求你在写class的时候需要写相应的Config文件,所以你要初始化很久以前的Service类的时候,前人都已经写好了Config文件,你直接在需要用的地方注入这个Service就可以了。这大大增加了项目的可维护性且降低了开发难度。

这里只是很粗略的讲了一下我自己对IoC和DI的理解。主要的目的是在于最大限度避免晦涩难懂的专业词汇,用尽量简洁,通俗,直观的例子来解释这些概念。如果让大家能有一个类似“哦!原来就是这么个玩意嘛!”的印象,我觉得就OK了。想要深入了解的话,可以上网查阅一些更权威的资料。这里推荐一下 Dependency injectionInversion of Control Containers and the Dependency Injection pattern 这两篇文章,讲的很好很详细。

 

私以为以上各位都没有对spring ioc的精髓讲解到位。大多都在很模糊的说是什么,抽象化的表述或者含糊其辞的说概念。

ioc的思想最核心的地方在于,资源不由使用资源的双方管理,而由不使用资源的第三方管理,这可以带来很多好处。第一,资源集中管理,实现资源的可配置和易管理。第二,降低了使用资源双方的依赖程度,也就是我们说的耦合度。

也就是说,甲方要达成某种目的不需要直接依赖乙方,它只需要达到的目的告诉第三方机构就可以了,比如甲方需要一双袜子,而乙方它卖一双袜子,它要把袜子卖出去,并不需要自己去直接找到一个卖家来完成袜子的卖出。它也只需要找第三方,告诉别人我要卖一双袜子。这下好了,甲乙双方进行交易活动,都不需要自己直接去找卖家,相当于程序内部开放接口,卖家由第三方作为参数传入。甲乙互相不依赖,而且只有在进行交易活动的时候,甲才和乙产生联系。反之亦然。这样做什么好处么呢,甲乙可以在对方不真实存在的情况下独立存在,而且保证不交易时候无联系,想交易的时候可以很容易的产生联系。甲乙交易活动不需要双方见面,避免了双方的互不信任造成交易失败的问题。因为交易由第三方来负责联系,而且甲乙都认为第三方可靠。那么交易就能很可靠很灵活的产生和进行了。

这就是ioc的核心思想。生活中这种例子比比皆是,支付宝在整个淘宝体系里就是庞大的ioc容器,交易双方之外的第三方,提供可靠性可依赖可灵活变更交易方的资源管理中心。另外人事代理也是,雇佣机构和个人之外的第三方。嗯,就这样,希望对题主有帮助。

==========================update===========================
在以上的描述中,诞生了两个专业词汇,依赖注入和控制反转
所谓的依赖注入,则是,甲方开放接口,在它需要的时候,能够讲乙方传递进来(注入)
所谓的控制反转,甲乙双方不相互依赖,交易活动的进行不依赖于甲乙任何一方,整个活动的进行由第三方负责管理。

这就是spring IOC的思想所在,不要只谈DI IOC这些概念。

人之所恶在好为人师,不实知,谨慎言。

Inversion of Control 控制反转 有什么好处的更多相关文章

  1. IoC(Inversion of Control 控制反转)

    控制反转(Inversion of Control,缩写为IoC),是面向对象编程中的一种设计原则,可以用来减低计算机代码之间的耦合度.其中最常见的方式叫做依赖注入(Dependency Inject ...

  2. 聊一聊PHP的依赖注入(DI) 和 控制反转(IoC)

    简介 IoC Inversion of Control 控制反转DI Dependency Injection 依赖注入 依赖注入和控制反转说的实际上是同一种东西,它们是一种设计模式,这种设计模式用来 ...

  3. 如何理解 PHP的依赖注入(DI) 和 控制反转(IoC)

    名词解释: IoC - Inversion of Control 控制反转 DI - Dependency Injection 依赖注入 依赖注入和控制反转说的实际上是同一个东西,它们是一种设计模式, ...

  4. 三大框架 之 Spring(IOC控制反转、DI依赖注入)

    目录 常用词汇 left join与left outer join的区别 Struts2的标签库导入 Spring Spring概述 什么是Spring spring特点 下载 IOC 什么IOC 传 ...

  5. 回顾Spirng ioc 控制反转

    Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的.结合网上对Spring Ioc的理解,回顾一下自 ...

  6. 控制反转(IOC)和依赖注入(DI)的区别

    IOC   inversion of control  控制反转 DI   Dependency Injection  依赖注入 要理解这两个概念,首先要搞清楚以下几个问题: 参与者都有谁? 依赖:谁 ...

  7. 简单解析依赖注入(控制反转)在Spring中的应用

    IoC——Inversion of Control  控制反转DI——Dependency Injection   依赖注入 大家都知道,依赖注入是Spring中非常重要的一种设计模式.可能很多初学者 ...

  8. 工厂方法模式与IoC/DI控制反转和依赖注入

    IoC——Inversion of Control  控制反转 DI——Dependency Injection   依赖注入 要想理解上面两个概念,就必须搞清楚如下的问题: 参与者都有谁? 依赖:谁 ...

  9. [.net 面向对象程序设计深入](26)实战设计模式——使用Ioc模式(控制反转或依赖注入)实现松散耦合设计(1)

    [.net 面向对象程序设计深入](26)实战设计模式——使用IoC模式(控制反转或依赖注入)实现松散耦合设计(1) 1,关于IOC模式 先看一些名词含义: IOC: Inversion of con ...

随机推荐

  1. Codeforce 464A. No to Palindromes!

    A. No to Palindromes! time limit per test 1 second memory limit per test 256 megabytes input standar ...

  2. poj3216 Prime Path(BFS)

    题目传送门  Prime Path The ministers of the cabinet were quite upset by the message from the Chief of Sec ...

  3. kubernetes(k8s)容器集群管理

    Kubernetes介绍 Kubernetes是google在2014年6月开源的一个容器集群管理系统,使用go语言开发,Kubernetes也称k8s. k8s是google内部一个叫borg的容器 ...

  4. OAuth授权登录

    一.写在前面 日常生活中,我们经常看到到一个网站时,需要登录的时候,都提供了第三方的登录,也就是说你可以使用你的微信,QQ,微博等账号进行授权登录.那么这个认证登录的东西到底是什么呢? 微信授权登录页 ...

  5. 将一个对象赋值给另一个对象(使用element CheckBox中length报错)

    注意两个对象相似(比如form表单),千万不要直接赋值(会把对象的属性也变化),很容易漏掉一些属性.比如此次CheckBox报length的错误,就是因为用于存放checkbox复选框选项的数组进过赋 ...

  6. jQuery动态回到顶部

    $(".back_top").click(function () { var sc = $(window).scrollTop(); $('body,html').animate( ...

  7. Ubuntu命令行操作

    一.文件/文件夹管理 ls 列出当前目录文件(不包括隐含文件) ls -a 列出当前目录文件(包括隐含文件) ls -l 列出当前目录下文件的详细信息 cd .. 回当前目录的上一级目录 cd - 回 ...

  8. Codeforces 1188D Make Equal DP

    题意:给你个序列,你可以给某个数加上2的幂次,问最少多少次可以让所有的数相等. 思路(官方题解):我们先给序列排序,假设bit(c)为c的二进制数中1的个数,假设所有的数最后都成为了x, 显然x &g ...

  9. String 字符串和StringBuffer的知识点总结

    String字符串 1  字符串.equals();                                                   equals和length的区别:equals ...

  10. Cascade R-CNN目标检测

    成功的因素: 1.级联而非并联检测器 2.提升iou阈值训练级联检测器的同时不带来负面影响 核心思想: 区分正负样本的阈值u取值影响较大,加大iou阈值直观感受是可以增加准确率的,但是实际上不是,因为 ...