【leetcode】1237. Find Positive Integer Solution for a Given Equation
题目如下:
Given a function
f(x, y)
and a valuez
, return all positive integer pairsx
andy
wheref(x,y) == z
.The function is constantly increasing, i.e.:
f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)
The function interface is defined like this:
interface CustomFunction {
public:
// Returns positive integer f(x, y) for any given positive integer x and y.
int f(int x, int y);
};For custom testing purposes you're given an integer
function_id
and a targetz
as input, wherefunction_id
represent one function from an secret internal list, on the examples you'll know only two functions from the list.You may return the solutions in any order.
Example 1:
Input: function_id = 1, z = 5
Output: [[1,4],[2,3],[3,2],[4,1]]
Explanation: function_id = 1 means that f(x, y) = x + yExample 2:
Input: function_id = 2, z = 5
Output: [[1,5],[5,1]]
Explanation: function_id = 2 means that f(x, y) = x * yConstraints:
1 <= function_id <= 9
1 <= z <= 100
- It's guaranteed that the solutions of
f(x, y) == z
will be on the range1 <= x, y <= 1000
- It's also guaranteed that
f(x, y)
will fit in 32 bit signed integer if1 <= x, y <= 1000
解题思路:看到1 <= x, y <= 1000时,就可以意识到O(n^2)的复杂度是可以接受的,那么两层循环计算一下吧。
代码如下:
"""
This is the custom function interface.
You should not implement it, or speculate about its implementation
class CustomFunction:
# Returns f(x, y) for any given positive integers x and y.
# Note that f(x, y) is increasing with respect to both x and y.
# i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
def f(self, x, y): """
class Solution(object):
def findSolution(self, customfunction, z):
"""
:type num: int
:type z: int
:rtype: List[List[int]]
"""
res = []
for x in range(1,1001):
for y in range(1,1001):
if customfunction.f(x,y) == z:
res.append([x,y])
elif customfunction.f(x,y) > z:
break
return res
【leetcode】1237. Find Positive Integer Solution for a Given Equation的更多相关文章
- 【leetcode】 First Missing Positive
[LeetCode]First Missing Positive Given an unsorted integer array, find the first missing positive in ...
- 【leetcode】First Missing Positive
First Missing Positive Given an unsorted integer array, find the first missing positive integer. For ...
- 【leetcode】First Missing Positive(hard) ☆
Given an unsorted integer array, find the first missing positive integer. For example,Given [1,2,0] ...
- 【LeetCode】7、Reverse Integer(整数反转)
题目等级:Easy 题目描述: Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 O ...
- 【LeetCode】8. String to Integer (atoi) 字符串转换整数
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:字符串转整数,atoi,题解,Leetcode, 力扣,P ...
- 【LeetCode】13. Roman to Integer 罗马数字转整数
题目: Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range from ...
- 【LeetCode】8. String to Integer (atoi) 字符串转整数
题目: Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input ca ...
- 【leetcode】13. Roman to Integer
题目描述: Given a roman numeral, convert it to an integer. 解题分析: 这道题只要百度一下转换的规则,然后着这解释写代码即可.实现上并没有什么难度,直 ...
- 【leetcode】8. String to Integer (atoi)
题目描述: Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input ...
随机推荐
- 【Python开发】python PIL读取图像转换为灰度图及另存为其它格式(也可批量改格式)
例如有一幅图,文件名为"a.jpg'. 读取: from PIL import Image #或直接import Image im = Image.open('a.jpg') 将图片转换成 ...
- 【Qt开发】关于Qt应用程序中的堆栈、静态存储区的使用错误
[Qt开发]关于Qt应用程序中的堆栈.静态存储区的使用错误 标签:[Qt开发] 最近终于又碰到了这个问题,想在main函数中定义一个局部大的数组,结果运行就报错,尼玛!刚开始真的不知道到发生了什么,后 ...
- C学习笔记-指针
指针的概念 指针也是一个变量,指针变量的值是另一个变量的地址 换句话说就是,指针存放的是一个内存地址,该地址指向另一块内存空间 指针变量的定义 指向一个变量的变量 int *p = NULL; p = ...
- MVC、MVP、MVVM模式的概念与区别
1. MVC框架 MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑.数据.界面显示 ...
- java初学者编译简单的计算机
package com.yj.test; import java.awt.BorderLayout; import java.awt.Font; import java.awt.GridLayout; ...
- python 爬虫 urllib模块介绍
一.urllib库 概念:urllib是Python自带的一个用于爬虫的库,其主要作用就是可以通过代码模拟浏览器发送请求.其常被用到的子模块在Python3中的为urllib.request和urll ...
- luoguP3390(矩阵快速幂模板题)
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...
- 利用docker搭建本地私有镜像仓库
主机名 角色 sht-sgmhadoopcm-01 Docker Repository sht-sgmhadoopnn-01 Docker Client 1. 在两台节点分别安装docker http ...
- Linux的桌面环境gnome、kde、xfce、lxde 等等使用比较
如果不是加入了图形界面,微软的Windows系列操作系统不会成功地占领计算机桌面这块高地.这种人机交换的图形化界面,使得界面更加直观.简易.而且更人性化,同时也大大减少了使用者的认知负担,普通用户无需 ...
- PreparedStatement 以及事务的注意事项
a).PreparedStatement 可以进行批量操作,但是与Statement有一定的区别 1. Statement可以进行不同sql语句的批量操作 即可以同时进行 crud 操作. Strin ...