图——图的Prim法最小生成树实现
1,运营商的挑战:
1,在下图标出的城市间架设一条通信线路;
2,要求:
1,任意两个城市间都能够通信;
2,将架设成本降至最低;
2,问题抽象:
1,如何在图中选择 n - 1 条边使得 n 个顶点间两两可达,并且这 n - 1 条边的权值之和最小?
3,最小(大)生成树:
1,仅使用图中的 n - 1 条边连接图中的 n 个顶点;
2,不能使用产生回路的边;
3,各边上的权值总和达到最小(大);
4,寻找最小生成树:
5,使用 prim 方法手工寻找最小生成树:
6,最小生成树算法步骤(prim):
1,选择某一顶点 v0 作为起始顶点,使得 T = {v0},F = {v1, v2, ..., vn},E = {};
2,每次选择一条边,这条边是所有(u, v)中权值最小的边,且 u 属于 T,v 属于 F;
3,修改 T,F,E:
T = T + {v}, F = F - {v}, E = E + {(u, v)}
4,当 F != NULL 时,且(u, v)存在,转 2;否则,结束;
7,最小生成树算法的原材料:
1,如果 T 集合到 F 集合中同一个顶点的连接有多条,那么选取权值最小的连接;
8,最小生成树算法流程图:
9,注意事项:
1,最小生成树仅针对无向图有意义;
2,必须判断图对象是否能够看做无向图;
1,如果可以才能够用 prim 算法;
10,有向图可看做无向图的充分条件:
1,有向的任意两顶点之间若存在连接,则两顶点相互可达、权值相等;
11,图类型(Graph)中的新增成员函数:
1,virtual bool isAdjacent(int i, int j) = 0;
1,判断在当前图中顶点 i 到顶点 j 是否邻接;
2,bool asUndirected();
1,判断当前的有向图是否能够看做无向图;
12,最小生成树 prim 算法实现:
1,判断邻接的实现:
1,邻接矩阵的实现:
/* 判断 i 到 j 顶点边是否连接,值不为空就连接 */
bool isAdjacent(int i, int j)
{
return ( <= i) && (i < vCount()) && ( <= j) && (j < vCount()) && (m_edges[i][j] != NULL);
}
2,邻接链表的实现:
bool isAdjacent(int i, int j)
{
return ( <= i) && (i < vCount()) && ( <= j) && (j < vCount()) && (m_list.get(i)->edge.find(Edge<E>(i, j)) >= );
}
2,判断是否为无向图的实现:
/* 最小生成树只能用于无向图,而我们针对的是有向图,所以要判断有向图什么时候能够被当做无向图 */
bool asUndirected()
{
bool ret = true; for(int i=; i<vCount(); i++)
{
for(int j=; j<vCount(); j++)
{
/* i 到 j 是连接的,并且 j 到 i 也是连接的,然后权值也要相等 */
if( isAdjacent(i, j) )
{
ret = ret && isAdjacent(j, i) && (getEdge(i, j) == getEdge(j, i));
}
}
} return ret;
}
3,Prim算法实现:
/* Prim 法实现最小、大生成树;返回值是数组,因为最小、大生成树的结果就是一系列的边,所以返回边的数组;参数表示理论上的最大权值; */
SharedPointer< Array< Edge<E> > > prim(const E& LIMIT, const bool MINIMUM = true) // 返回一个指向存储边的数组指针
{
LinkQueue< Edge<E> > ret; // 返回边队列,本质是 E 集合 /* 执行 prim 算法 */
if( asUndirected() ) // 无向图
{
DynamicArray<int> adjVex(vCount());//保存最小权值的边的 F集合中顶点
DynamicArray<bool> mark(vCount()); // 保存 T 集合或者 F 集合的标记
DynamicArray<E> cost(vCount()); // 保存最小权值的顶点中 E 集合中顶点,寻找最小值要配合 mark 使用
SharedPointer< Array<int> > aj = NULL; // 保存某个顶点邻接数组
bool end = false; // 用于标记判断 prim 是否要中断执行
int v = ; // 代表习惯性的从 0 顶点生成最小生成树 /* 执行初始化 */
for(int i=; i<vCount(); i++)
{
adjVex[i] = -; // 没有边被访问
mark[i] = false; // 顶点都没有被访问
cost[i] = LIMIT; // 参数传递理论上的最大权值
} mark[v] = true; // 初始顶点做标记 aj = getAdgacent(v); // 获取初始顶点的邻接顶点 /* 设置初始顶点对应的位置 */
for(int j=; j<aj->length(); j++)
{
cost[(*aj)[j]] = getEdge(v, (*aj)[j]); // 保存/到对应顶点的响应权值
adjVex[(*aj)[j]] = v; // 记录权值所对应的顶点,即能够得到边
} /* 真正循环找边 */
for(int i=; (i<vCount()) && !end; i++) // 最多循环顶点次;也可能条件不满足,提前结束,所以有 !end
{
E m = LIMIT;
int k = -; // 记录最小值的顶点 /* 通过 cost 数组找最小值 */
for(int j=; j<vCount(); j++)
{
if( !mark[j] && (MINIMUM ? (cost[j] < m) : (cost[j] > m)) ) // !makr[j] 条件是因为选取最小权值时本质上是选取连接的最小边,对应的顶点是在 F集合,此时 mark 中对应的值为假当中的,则在 mark 数组中对应的就为假,所以要这个条件,这里有最小值最大值的设置
{
m = cost[j];
k = j; // 得到记录的最小值的顶点号
}
}
end = (k == -); // 是否找到合法最小权值,因为有可能在上面 if 条件中没有找到合法的最小权值
if( !end )
{
ret.add(Edge<E>(adjVex[k], k, getEdge(adjVex[k], k))); // 在 adjVex 中找到这条边 mark[k] = true; // 标记顶点进入了 T 集合 aj = getAdgacent(k); // 找新的集合连接 /* 找到之后更新 cost 数组和 adgVex 数组 */
for(int j=; j<aj->length(); j++)
{
if( !mark[(*aj)[j]] && (MINIMUM ? (getEdge(k, (*aj)[j]) < cost[(*aj)[j]]) : (getEdge(k, (*aj)[j]) > cost[(*aj)[j]])) ); //只对 F 集合操作
{
cost[(*aj)[j]] = getEdge(k ,(*aj)[j]); //如果 T 到 F 集合新连接权值较小,则记录到 cost 数组中,新加入的点 k 和之前 T 集合里的点到 F 集合里的点的权值要比较呢;如果在 k 到 F 集合中找不到合适的点,则用T中的点代替
adjVex[(*aj)[j]] = k; // 将最小权值的起始点设入到邻接边中
}
}
}
}
}
else
{
THROW_EXCEPTION(InvalidOperationException, "Prim operation is for undirected graph only ...");
} /* 判断边的数目是否够,即 n-1 条边 */
if( ret.length() != (vCount() - ) )
{
THROW_EXCEPTION(InvalidOperationException, "No enough edge for prim operation ...");
}
return toArray(ret); // 返回值是边的数组
}
14,prim 算法测试代码:
#include <iostream>
#include "MatrixGraph.h"
#include "ListGraph.h" using namespace std;
using namespace DTLib; template< typename V, typename E >
Graph<V, E>& GraphEasy()
{
static MatrixGraph<, V, E> g; g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , ); return g;
} template< typename V, typename E >
Graph<V, E>& GraphComplex()
{
static ListGraph<V, E> g(); g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , ); return g;
} int main()
{
Graph<int, int>& g = GraphEasy<int, int>();
SharedPointer< Array< Edge<int> > > sa = g.prim(); int w = ; for(int i=; i<sa->length(); i++)
{
w += (*sa)[i].data; cout << (*sa)[i].b << " " << (*sa)[i].e << " " << (*sa)[i].data << endl;
} cout << "Weight: " << w << endl; return ;
}
15,小结:
1,最小生成树使得顶点间的连通代价最小;
2,Prim 算法通过顶点的动态标记寻找最小生成树;
3,Prim 算法的关键是集合概念的运用(T 集合,F 集合);
4,利用 Prim 算法的思想也能寻找图的“最大生成树”;
图——图的Prim法最小生成树实现的更多相关文章
- c/c++ 图的创建及图的相关函数(链表法)
c/c++ 图的创建及图的相关函数(链表法) 图的概念 图由点和线组成 知道了图中有多少个点,和哪些点之间有线,就可以把一张图描绘出来 点之间的线,分有方向和无方向 创建图 创建图,实际就是创建出节点 ...
- 随机Prim法创建随机迷宫(C#实现)
因为这两天想参加一个比赛,所以就在上网找素材,刚好看到了迷宫生成,就决定拿这个开刀了. 参考的原文地址为(来源页面) 源地址中是使用AS实现的,没学过AS,所以直接不会运行,于是就自己根据原文的概念进 ...
- 图——图的Kruskal法最小生成树实现
1,最小生成树的特征: 1,选取的边是图中权值较小的边: 2,所有边连接后不构成回路: 2,prim 算法是以顶点为核心的,最下生成树最大的特征是边,但 prim 算法非要以顶点为核心来进行,有些复杂 ...
- 6)图[2]Prim算法[最小生成树]
Prim 算法 求解方法: 首先将所指定的起点作为已选顶点,然后反复在满足如下条件下的边中选择一条最小边,直到 所有顶点已成为已选顶点为止(选择n-1条边). #include "iostr ...
- matlab学习——04图与网络(最短路,最小生成树,最大流)
04图与网络 1.最短路 (1) 自己写的dijstra算法 format compact; clc,clear all a=zeros(6); a(1,2)=50;a(1,4)=40;a(1,5)= ...
- 图——图的Floyd法最短路径实现
1,Dijkstra 算法一次性求得起始顶点到所有其它顶点的最短路径,如果想要求解任意两个顶点之间的最短路径,可将图中顶点作为起始顶点执行 n 次 Dijkstra 算法就可以了: 2,可能解决方案: ...
- 图——图的Dijkstra法最短路径实现
1,最短路径的概念: 1,从有向图中某一顶点(起始顶点)到达另一顶点(终止顶点)的路径中,其权值之和最小的路径: 2,问题的提法: 1,给定一个带权有向图 G 与起始顶点 v,求从 v 到 G 中其它 ...
- Prim求解最小生成树
#include "ljjz.h" typedef struct edgedata /*用于保存最小生成树的边类型定义*/ { int beg,en; /*beg,en是边顶点序号 ...
- Prim Algoritm(最小生成树)
Prim Algorithm.这个算法可以分为下面几个步骤: 将顶点集V分成两个集合A和B,其中集合A表示目前已经在MST中的顶点,而集合B则表示目前不在MST中的顶点. 在B寻找与集合A连通的最短的 ...
随机推荐
- pandas Series和dataframe
DataFrame是一个表格型数据结构,与Series不同的是,DataFrame可以含有一组或者有序的列,每列可以使不同的值的类型,它可以被看做成Series的字典.
- Github Actions教程:运行python代码并Push到远端仓库
我自己做了一个网站,这个网站会使用一个python脚本来生成. 具体生成的方法是python脚本会读取目录下的csv文件,将每一行数据解析成固定格式,然后生成html文件,最后需要将修改后的文件自动p ...
- C++ 没有合适的默认构造函数(无参数构造函数)
本来今天吧,想写一个proxy class的范例,写着写着出了个问题,见如下代码 ; Array1D* _elemArray = new Array1D[_cap]; 同时我为Array1D这个类写了 ...
- python2---输出1--100之间的偶数
#!/usr/bin/env python方法1:num = 1while num <= 100: if num % 2 == 0: print(num) num += 1方法2: #!/usr ...
- 阿里云移动研发平台 EMAS 助力银行业打造测试中台,提升发版效能
随着移动互联网的发展,手机银行凭借低成本.操作简单.不受时间空间约束等优势,正逐步替代传统的网银交易方式.越来越多的银行开始了“业务移动化”转型之路,“手机APP”已经成为企业价值传递和关系维护的关键 ...
- [模板] Kruskal算法 && 克鲁斯卡尔重构树
克鲁斯卡尔重构树 发现没把板子放上来... 现在放一下 克鲁斯卡尔算法的正确性是利用反证法证明的. 简要地说, 就是如果不加入当前权值最小的边 \(e_1\), 那么之后加入的边和这条边会形成一个环. ...
- 序列式容器————string
目录 前言 1.构造函数 2.size() 3.length() 4.maxsize() 5.capacity() 6.reserve() 7.resize() 8.获取元素at() 9.字符串比较c ...
- linux-解决添加的网卡无法识别的问题(转载)
添加网卡之后,网卡无法被正确的识别和使用排错方法查看/etc/udev/rules.d/70-persistent-net.rules的内容,该文件中可以查看到新添加的网卡的MAC地址修改/etc/s ...
- ES6 函数参数的解构赋值
function add([x, y]){ return x + y; } add([1, 2]); // 3
- MySort的实现
代码: package week12; import java.util.*; import java.lang.Integer; public class MySort{ public static ...