BZOJ 2655: calc(拉格朗日插值)
解题思路
首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f[i-1][j]\)。这个转移复杂度是\(O(n*A)\)的,无法通过此题。考虑优化,打个表发现这其实是一个多项式,次数可以用差分法确定,然后用拉格朗日插值即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN = 505;
typedef long long LL;
int n,A,MOD;
LL f[MAXN<<2][MAXN<<2],ans;
inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
}
signed main(){
scanf("%d%d%d",&A,&n,&MOD);
f[0][0]=1;
for(int i=1;i<=n*3;i++){
f[i][0]=f[i-1][0];
for(int j=1;j<=i;j++){
f[i][j]=(LL)f[i-1][j-1]*i%MOD*j%MOD+f[i-1][j];
f[i][j]%=MOD;
}
}
LL s1,s2;
if(A<=n*3) {printf("%lld\n",f[A][n]);return 0;}
for(int i=n;i<=n*3;i++){
s1=s2=1ll;
for(int j=n;j<=n*3;j++)if(i!=j){
s1=s1*(A-j)%MOD;
s2=s2*(i-j)%MOD;
}
s1=(s1+MOD)%MOD;s2=(s2+MOD)%MOD;
ans=ans+s1%MOD*fast_pow(s2,MOD-2)%MOD*f[i][n]%MOD;ans%=MOD;
}
printf("%lld",ans);
return 0;
}
BZOJ 2655: calc(拉格朗日插值)的更多相关文章
- bzoj 2655 calc —— 拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...
- bzoj 2655 calc——拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...
- bzoj 2566 calc 拉格朗日插值
calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 377 Solved: 226[Submit][Status][Discuss] Descr ...
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...
- bzoj 2655: calc [容斥原理 伯努利数]
2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...
- [BZOJ 2655]calc
Description 题库链接 给出 \(A,n,p\) ,让你在模 \(p\) 意义下求所有序列 \(a\) 满足"长度为 \(n\) 且 \(a_i\in[1,A]\) ,并且对于 \ ...
- BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2655 题解 据说有一种神仙容斥做法,但我不会. 以及貌似网上大多数人的dp和我的做法都不 ...
- bzoj千题计划269:bzoj2655: calc (拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...
随机推荐
- Spring框架-经典的案例和demo,一些可以直接用于生产,使用atomikos来处理多数据源的一致性事务等
Spring Examples Demo website:http://www.ityouknow.com/ 对Spring框架的学习,包括一些经典的案例和demo,一些可以直接用于生产. sprin ...
- element-ui弹窗实现自定义宽度
<el-dialog :title="title" :visible.sync="hiddenDialogCommon" :width="wid ...
- 【Tomcat】2.配置Tomcat服务器端口和HTTPS
1.修改XML配置文件 找到Tomcat安装目录下的conf文件夹,打开server.xml文件(可以用笔记本打开) 其中有几行代码如下 <Server port="8005" ...
- java中 抽象类和接口的区别
一. 什么是抽象类及什么是抽象方法 抽象方法是一种特殊的方法:他只有声明,而没有具体实现,抽象方法的声明格式为: abstract void funName(); 抽象方法必须用 abstract 修 ...
- error LNK2001: 无法解析的外部符号 __imp__Shell_NotifyIconA@8
编译链接报错 error LNK2001: 无法解析的外部符号 __imp__Shell_NotifyIconA@8 解决方案: 在代码中添加链接库Shell32.lib #pragma commen ...
- Hive 时间操作函数(转)
1.日期函数UNIX时间戳转日期函数: from_unixtime 语法: from_unixtime(bigint unixtime[, string format]) 返回值: string ...
- django 重写 mysql 连接库实现连接池
django 重写 mysql 连接库实现连接池 问题 django 项目使用 gunicorn + gevent 部署,并设置 CONN_MAX_AGE 会导致 mysql 数据库连接数飙升,在高并 ...
- 微信支付(JsApi)
这两天有个小项目用的微信网页jsapi支付 用的thinkphp框架开发 ,首次做微信支付 碰了很多壁,做了简单就记录,方便回顾 也希望对大家能有点帮助,也希望路过的大神批评指正.. 一.必备条件及相 ...
- toString()方法,与call()方法结合;用来进行数据类型检测
//toString()方法,与call()方法结合;用来进行数据类型检测 console.log(Object.prototype.toString.call([]));//'[object A ...
- 如何在vim中同时编辑多个文件
参考:http://stackoverflow.com/a/53668/941650 Why not use tabs (introduced in Vim 7)? You can switch be ...