A permutation p of size n is an array such that every integer from 1 to n occurs exactly once in this array.

Let's call a permutation an almost identity permutation iff there exist at least n - k indices i (1 ≤ i ≤ n) such that pi = i.

Your task is to count the number of almost identity permutations for given numbers n and k.

Input

The first line contains two integers n and k (4 ≤ n ≤ 1000, 1 ≤ k ≤ 4).

Output

Print the number of almost identity permutations for given n and k.

Examples

Input

4 1

Output

1

Input

4 2

Output

7

Input

5 3

Output

31

Input

5 4

Output

76

题意:

给你一个整数n和k,问有多少个n的全排列中 下标和数值相等的个数是大于等于n-k 的。

思路:

那么我们不妨从n-k到n枚举 下标和数值相等的个数i,对于每一个i,我们可以从n中选择i个数,让他们在1,2,3,4,,,n这个排列中位置不变,剩下的n-i个数,不在自己的位置上,那么问题就转化为 对于每一个i,求C(n,i)a(i),a(i)是i个数的全排列,每一个数都不在原来位置上的排列种类数。 而a[i] 是一个 递推数列 a[i]=ia[i-1 ]+-1^i ,我们知道a[0]=1,这样顺推就可以求出所有i对答案的贡献,累加起来就是答案值了。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll a[maxn]; ll C(ll m,ll n)//m 中 选 n 个
{
long long ans=1;
for(long long k=1; k<=n; k++)
{
ans=(ans*(m-n+k))/k;
}
return ans;
} int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
a[0]=1ll;
a[1]=0ll;
a[2]=1ll;
a[3]=2ll;
a[4]=9ll;
int base=-1;
repd(i,5,1010)
{
a[i]=1ll*i*a[i-1]+base;
base*=-1;
}
ll n,k;
cin>>n>>k;
ll ans=0ll;
repd(i,n-k,n)
{
ans+=C(n,i)*a[n-i];
}
cout<<ans<<endl;
return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Educational Codeforces Round 32 Almost Identity Permutations CodeForces - 888D (组合数学)的更多相关文章

  1. Educational Codeforces Round 32

    http://codeforces.com/contest/888 A Local Extrema[水] [题意]:计算极值点个数 [分析]:除了第一个最后一个外,遇到极值点ans++,包括极大和极小 ...

  2. Educational Codeforces Round 32 Problem 888C - K-Dominant Character

    1) Link to the problem: http://codeforces.com/contest/888/problem/C 2) Description: You are given a ...

  3. Educational Codeforces Round 32 E. Maximum Subsequence

    题目链接 题意:给你两个数n,m,和一个大小为n的数组. 让你在数组找一些数使得这些数的和模m最大. 解法:考虑 dfs但是,数据范围不允许纯暴力,那考虑一下折半搜索,一个从头开始往中间搜,一个从后往 ...

  4. Educational Codeforces Round 32:E. Maximum Subsequence(Meet-in-the-middle)

    题目链接:E. Maximum Subsequence 用了一个Meet-in-the-middle的技巧,还是第一次用到这个技巧,其实这个技巧和二分很像,主要是在dfs中,如果数量减小一半可以节约很 ...

  5. Educational Codeforces Round 32 Maximum Subsequence CodeForces - 888E (meet-in-the-middle,二分,枚举)

    You are given an array a consisting of n integers, and additionally an integer m. You have to choose ...

  6. Educational Codeforces Round 32 E 二分

    题意:从数组中选几个(任意),使他们的和modm的值最大 题解:我一开始是直接暴力写,然后就会t 其实这题可以用二分的方法写,一半数组的值用来遍历,一般数组的值用来查询. 二分查询就能把时间继续缩短 ...

  7. Codeforces Round #324 (Div. 2) Kolya and Tanya 组合数学

    原题链接:http://codeforces.com/contest/584/problem/B 题意: 有3*n个人围成一个圈,每个人可以分配1到3个硬币,但是相邻为n的三个人的和不能是6,问你有多 ...

  8. 【Codeforces Round #411 (Div. 1)】Codeforces 804C Ice cream coloring (DFS)

    传送门 分析 这道题做了好长时间,题意就很难理解. 我们注意到这句话Vertices which have the i-th (1 ≤ i ≤ m) type of ice cream form a ...

  9. Codeforces Round #268 (Div. 2) ABCD

    CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...

随机推荐

  1. tomcat简单性能优化

    1.内存使用配置 2.最大连接数配置

  2. Java第一次学习总结

    学习内容: 1.java是本学期刚刚接触新的一种编程语言,与大一C语言在语法上有很多相同之处,不同的是在很多问题上,更加简练,更加易于理解. 例如:输出水仙花数,从C语言近五十行代码缩短近十几行,数据 ...

  3. SpringBoot 整合Shiro 一指禅

    目标 了解ApacheShiro是什么,能做什么: 通过QuickStart 代码领会 Shiro的关键概念: 能基于SpringBoot 整合Shiro 实现URL安全访问: 掌握基于注解的方法,以 ...

  4. Spring boot 自定义一个starter pom

    用过springboot的自动配置会觉得非常方便,我们完全可以自己写一个starter pom,这样不仅可以有自动配置功能,而且具有更通用的的耦合度低的配置, 新建一个starter的maven项目, ...

  5. jenkins不展示set Build Description Setter插件

    问题描述: 1.jenkins 已下载 set build descripteion ,并且配置过,可以在构建历史中展示就用二维码 2.问题:构建历史中不展示二维码了,如图: 总是排查: 1.首先想到 ...

  6. 打印一个浮点数组,会输出字符串"Hello, world“ & 浮点数的二进制表示(IEEE 754标准)

    #include <stdio.h> #include<stdlib.h> int main() { float a[3] = { 1143139122437582505939 ...

  7. 【Linux开发】如何查看Linux kernel的内置模块驱动列表和进程ID

    [Linux开发]如何查看Linux kernel的内置模块驱动列表和进程ID 标签:[Linux开发] 命令: cat /lib/modules/$(uname -r)/modules.builti ...

  8. 第二次课程总结&学习总结

    Java实验报告 班级 计算机科学与技术一班 学号 20188390 姓名 宋志豪 实验 写一个名为Rectangle的类表示矩形.其属性包括宽width.高height和颜色color,width和 ...

  9. EML文件(MIME邮件)格式分析

    电子邮件普遍遵循的邮件技术规范.MIME邮件由邮件头和邮件体两部分组成.邮件头包括:标题,送信人,收信人,创建日期,邮件体内容类型和邮件体编码方式等内容.邮件体包括:正文,超文本,内嵌数据和附件等内容 ...

  10. Java GC日志

    JVM 命令:-Xms5m -Xmx20m -XX:+PrintGCDetails -XX:+PrintCommandLineFlags -XX:+UseSerialGC [GC (Allocatio ...