好久之前就想学了 然后今天恰巧一道题需要用到就学了

前置芝士

1.主席树[可持久化数组]

2.并查集

如果你掌握了前面两个那么这个东西你就会觉得非常沙茶。。

构造

可持久化并查集 = 主席树  + 并查集

有点蠢= =

当然 我们这里的并查集是要按秩合并的并查集

[按秩合并:就是把dep小的连接到大的上面 这个复杂度分析出来是O(lgn)的 原因不要问我 我不知道= =]

不可以路径压缩 原因好像是可以被极限数据卡掉?[我也不知道路径压缩了你怎么访问历史版本的emm。。]

这样的话 我们每次开log个节点连下来 然后对于每个点维护fa和dep就可以了

然后dep的更新就是 当两个高度一样的时候 连起来那么被连的深度需要+1

就没了qwq。

例题就是BZOJ3673 真·模板

代码。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 20021225
#define ll long long
#define mxn 200010
#define pa pair<int,int>
#define mp make_pair
using namespace std; struct node{int ls,rs,fa,dep;}t[mxn*40];
int cnt,rt[mxn],n;
void build(int &x,int l,int r)
{
x=++cnt;
if(l==r){t[x].fa=l;t[x].dep=1;return;}
int mid=l+r>>1;
build(t[x].ls,l,mid); build(t[x].rs,mid+1,r);
} void insert(int &x,int lt,int l,int r,int d,int fa)
{
x=++cnt; t[x] = t[lt];
if(l==r){t[x].fa = fa; return;}
int mid = l+r>>1;
if(d<=mid) insert(t[x].ls,t[lt].ls,l,mid,d,fa);
else insert(t[x].rs,t[lt].rs,mid+1,r,d,fa);
} void update(int x,int l,int r,int d)
{
if(l==r){t[x].dep++; return;}
int mid = l+r>>1;
if(d<=mid) update(t[x].ls,l,mid,d);
else update(t[x].rs,mid+1,r,d);
} int query(int x,int l,int r,int d)
{
if(l==r) return x;
int mid = l+r>>1;
if(d<=mid) return query(t[x].ls,l,mid,d);
else return query(t[x].rs,mid+1,r,d);
} int find(int root,int x)
{
int pos = query(root,1,n,x);
if(t[pos].fa==x) return pos;
return find(root,t[pos].fa);
} int main()
{
int m,opt,x,y;
scanf("%d%d",&n,&m);
build(rt[0],1,n);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&opt,&x);
if(opt==2){rt[i]=rt[x];continue;}
scanf("%d",&y); rt[i]=rt[i-1];
int fx = find(rt[i],x),fy = find(rt[i],y);
if(opt==1)
{
if(fx!=fy)
{
if(t[fx].dep < t[fy].dep) swap(fx,fy);
int ffx = t[fx].fa , ffy = t[fy].fa;
insert(rt[i],rt[i-1],1,n,ffy,ffx);
if(t[fx].dep == t[fy].dep) update(rt[i],1,n,ffx);
}
}
else printf("%d\n",t[fx].fa==t[fy].fa);
}
return 0;
}

【学习笔记】可持久化并查集(BZOJ3673)的更多相关文章

  1. [学习笔记]可持久化数据结构——数组、并查集、平衡树、Trie树

    可持久化:支持查询历史版本和在历史版本上修改 可持久化数组 主席树做即可. [模板]可持久化数组(可持久化线段树/平衡树) 可持久化并查集 可持久化并查集 主席树做即可. 要按秩合并.(路径压缩每次建 ...

  2. BZOJ3673 可持久化并查集 by zky 【主席树】

    BZOJ3673 可持久化并查集 by zky Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a ...

  3. bzoj3673 & bzoj3674 & 洛谷P3402 可持久化并查集

    题目:bzoj3673:https://www.lydsy.com/JudgeOnline/problem.php?id=3673 bzoj3674:https://www.lydsy.com/Jud ...

  4. bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版

    bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...

  5. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  6. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  7. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

  8. bzoj3673可持久化并查集

    n个集合 m个操作操作:1 a b 合并a,b所在集合2 k 回到第k次操作之后的状态(查询算作操作)3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0<n,m<=2*10^ ...

  9. 【BZOJ3673/3674】可持久化并查集/可持久化并查集加强版 可持久化线段树

    [BZOJ3674]可持久化并查集加强版 Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了! ...

随机推荐

  1. 求能粘贴Word 内容(含图片)的在线编辑器

    word图片转存,是指UEditor为了解决用户从word中复制了一篇图文混排的文章粘贴到编辑器之后,word文章中的图片数据无法显示在编辑器中,也无法提交到服务器上的问题而开发的一个操作简便的图片转 ...

  2. 修改Oracle数据库SGA和PGA大小

    SGA的大小:一般物理内存20%用作操作系统保留,其他80%用于数据库.SGA普通数据库可以分配40%-60%之间,PGA可以分配20%-40%之间.1.以dba身份登录并查看SGA信息:SQL> ...

  3. 不间断电源(UPS)

    UPS电源一般指不间断电源 UPS(Uninterruptible Power System/Uninterruptible Power Supply),即不间断电源,是将蓄电池(多为铅酸免维护蓄电池 ...

  4. leaflet-加载天地图-解决纬度偏移特别大

    这几天学习 leaflet 在加载天地图时将以前的接口拿来用结果偏差了特别大(差不多是 90 度),中国纬度到了 100 多,试了改变投影和 y 轴翻转的配置都不好使,最后上网搜索到了Leaflet. ...

  5. RESTful_基础知识

    目录 目录 前言 RESTful REST原则 REST的Web原则 分层系统原则 RESTful的实现 SOA 面向服务的体系结构 RPC样式 Web服务 RPC的实现过程 SOAP 简单对象访问协 ...

  6. (appium+python)UI自动化_07_app UI自动化实例【叮咚搜索加车为例】

    前言 初学UI自动化的小伙伴,在配置好appium+python自动化环境后,往往不知道如何下手实现自动化.小编在初期学习的时候也有这种疑惑,在此以叮咚买菜app-搜索加车为实例,展示下appium是 ...

  7. poj3280Cheapest Palindrome

    给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符Add与Delete的代价,求将S变为回文串的最小代价和. Input 第一行 ...

  8. python参数的介绍

    一.函数1.为什么要使用函数?减少代码的冗余2.函数先定义后使用(相当于变量一样先定义后使用)3.函数的分类:内置函数:python解释器自带的,直接拿来用就行了自定义函数:根据自己的需求自己定义的函 ...

  9. 洛谷P5018 对称二叉树——hash

    给一手链接 https://www.luogu.com.cn/problem/P5018 这道题其实就是用hash水过去的,我们维护两个hash 一个是先左子树后右子树的h1 一个是先右子树后左子树的 ...

  10. Ubuntu下的图形化多线程下载器XDM

    目录 1.下载 2.安装 3.浏览器支持 使用Ubuntu下载东西经常过于缓慢,因此需要多进程下载器. 1.下载 下载链接:http://xdman.sourceforge.net/#download ...