题目传送门(内部题91)


输入格式

  第一行一个正整数$N$,表示颜色种类数。
  第二行$N$个正整数$k[i],k[i]$表示第$i$种颜色的数量$(1\leqslant k[i]\leqslant 3)$。


输出格式

  一个整数,表示相同颜色的小球不相邻的方案数。


样例

样例输入1:

3
1 2 3

样例输出1:

10

样例输入2:

4
1 3 2 1

样例输出2:

96


数据范围与提示

输入的所有数字均为正整数。


题解

正解(组合数学$+$容斥原理$+$高精度计算$+$动态规划)好麻烦,我不会……

于是就想到了记忆化搜索……

考场上想的是一个$13$维的$DP$……

定义$dp[lst][res1][res2][res3][res4][res5][res6][res7][res8][res9][res10][res11][res12]$分别表示上一位是$lst$,小球$i$还有$res_i$个的方案数……

就为了比别人多骗十分……

再来考虑正解。

设$f[x][i][j][k]$分别上一次放的小球出现的次数为$x$,表示个数为$1$的小球有$i$个,个数为$2$的小球有$j$个,个数为$3$的小球有$k$个。

然后记忆话搜索就好了。

注意可能会爆$long\ long$,但是不会爆$\text{__}int128$。

数据范围中小球的个数可以到$4\sim 5$。

时间复杂度:$\Theta(13^3\times 3)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const long long mod=1e18;
int n;
int k[4];
__int128 dp[3][13][13][13];
__int128 dfs(int lst,int res1,int res2,int res3)
{
if(dp[lst][res1][res2][res3]!=-1)return dp[lst][res1][res2][res3];
dp[lst][res1][res2][res3]=0;
if(lst==0)
{
if(res1)dp[lst][res1][res2][res3]+=res1*dfs(0,res1-1,res2,res3);
if(res2)dp[lst][res1][res2][res3]+=res2*dfs(1,res1+1,res2-1,res3);
if(res3)dp[lst][res1][res2][res3]+=res3*dfs(2,res1,res2+1,res3-1);
}
if(lst==1)
{
if(res1>1)dp[lst][res1][res2][res3]+=(res1-1)*dfs(0,res1-1,res2,res3);
if(res2)dp[lst][res1][res2][res3]+=res2*dfs(1,res1+1,res2-1,res3);
if(res3)dp[lst][res1][res2][res3]+=res3*dfs(2,res1,res2+1,res3-1);
}
if(lst==2)
{
if(res1)dp[lst][res1][res2][res3]+=res1*dfs(0,res1-1,res2,res3);
if(res2>1)dp[lst][res1][res2][res3]+=(res2-1)*dfs(1,res1+1,res2-1,res3);
if(res3)dp[lst][res1][res2][res3]+=res3*dfs(2,res1,res2+1,res3-1);
}
return dp[lst][res1][res2][res3];
}
int main()
{
memset(dp,-1,sizeof(dp));
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
k[x]++;
}
dp[0][0][0][0]=dp[1][0][0][0]=dp[2][0][0][0]=1;
dfs(0,k[1],k[2],k[3]);
if(dp[0][k[1]][k[2]][k[3]]>mod)printf("%lld",(long long)(dp[0][k[1]][k[2]][k[3]]/mod));
printf("%lld",(long long)(dp[0][k[1]][k[2]][k[3]]%mod));
return 0;
}

rp++

[CSP-S模拟测试]:彩球问题(记忆化搜索)的更多相关文章

  1. HDU 3779 Railroad(记忆化搜索)

    Railroad Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Subm ...

  2. [CSP-S模拟测试]:集合合并(记忆化搜索)

    题目传送门(内部题133) 输入格式 第一行一个正整数$n$. 第二行$n$个正整数$a_i$,表示一开始有$S_i=\{a_i\}$ 输出格式 输出一个非负整数表示最大的收益之和 样例 样例输入: ...

  3. 【10.31校内测试】【组合数学】【记忆化搜索/DP】【多起点多终点二进制拆位Spfa】

    Solution 注意取模!!! Code #include<bits/stdc++.h> #define mod 1000000007 #define LL long long usin ...

  4. 【BZOJ-3895】取石子 记忆化搜索 + 博弈

    3895: 取石子 Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 263  Solved: 127[Submit][Status][Discuss] D ...

  5. HDU 4597 Play Game(记忆化搜索,深搜)

    题目 //传说中的记忆化搜索,好吧,就是用深搜//多做题吧,,这个解法是搜来的,蛮好理解的 //题目大意:给出两堆牌,只能从最上和最下取,然后两个人轮流取,都按照自己最优的策略,//问说第一个人对多的 ...

  6. HDU-1428(记忆化搜索)

    Problem Description LL 最近沉迷于AC不能自拔,每天寝室.机房两点一线.由于长时间坐在电脑边,缺乏运动.他决定充分利用每次从寝室到机房的时间,在校园里散散步.整个HDU 校园呈方 ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 B BE, GE or NE(博弈,记忆化搜索)

    链接https://nanti.jisuanke.com/t/31454 思路 开始没读懂题,也没注意看数据范围(1000*200的状态,记忆化搜索随便搞) 用记忆化搜索处理出来每个状态的胜负情况 因 ...

  8. FZU 2092 收集水晶(记忆化搜索)

    Problem 2092 收集水晶 Accept: 101 Submit: 439 Time Limit: 5000 mSec Memory Limit : 32768 KB Problem Desc ...

  9. POJ 2704 Pascal's Travels 【DFS记忆化搜索】

    题目传送门:http://poj.org/problem?id=2704 Pascal's Travels Time Limit: 1000MS   Memory Limit: 65536K Tota ...

随机推荐

  1. MyBatis一级缓存的笔记及记录

    精髓内容来源于<图灵学院> 一.概述: 一级缓存是MyBatis天然自带的,是默认开启且没有关闭的地方,1级缓存只能作用于查询回话中,所以也叫会话缓存: 这里举个例子: 订单表存在一对多的 ...

  2. CF 1178E Archaeology 题解

    题面 这道题竟然是E?还是洛谷中的黑题? wow~!! 于是就做了一下: 然后一下就A了:(这并不代表想的容易,而是写的容易) 这道题就是骗人的!! 什么manacher,什么回文自动机,去靠一边站着 ...

  3. python pycharm 注册码

    D87IQPUU3Q-eyJsaWNlbnNlSWQiOiJEODdJUVBVVTNRIiwibGljZW5zZWVOYW1lIjoiTnNzIEltIiwiYXNzaWduZWVOYW1lIjoiI ...

  4. [.net core]5.outProcess

    与inProcess比较  OutProcess性能更差,因为此时它使用了两个web服务器  ,内部是kestrel  外部可能是iis apache nginx 等. 使用visual studio ...

  5. 剑指offer-数值的整数次方-调整数组顺序使奇数位于偶数前面-代码的完整性-python

    题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方.   保证base和exponent不同时为0   思路 求base的expon ...

  6. MongoDB入门_shell基本操作

    使用shell客户端连接mongoDB数据库 [root@localhost mongodb_simple]# ./bin/mongo /admin mongoDB的简单基本操作 1. mongoDB ...

  7. The Python Challenge 闯关笔记

    The Python Challenge : http://www.pythonchallenge.com/ Level 0: 看提示图片中为2**38,计算值为274877906944. Hint: ...

  8. creat-react-app生成的项目默认端口号是3000,如何更改?

    从项目的 package.json 文件中可以看到,npm start即scripts start.js,因此我们找到scripts/start.js ,部分代码如下: 找到 DEFAULT_PORT ...

  9. 安装mysql的步骤并利用mysql原始密码修改自定义密码

    1.给刚下载好的mysql软件tar包,进行解包 命令:tar -xf mysql-5.7.26-1.el7.x86_64.rpm-bundle.tar 然后利用yum装包 命令:yum -y ins ...

  10. Spring + Mybatis 企业应用实战 第3章 Sping MVC的常用注解

    注解(annotation) @Controller @Controller是扩展的@Component的,可以说基本一样,就是作为一种标志. @RequestMapping value:     指 ...