题目描述

淘汰赛制是一种极其残酷的比赛制度。2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐。每一轮中,将所有参加该轮的选手按标号从小到大排序后,第1位与第2位比赛,第3位与第4位比赛,第5位与第6位比赛……只有每场比赛的胜者才有机会参加下一轮的比赛(不会有平局)。这样,每轮将淘汰一半的选手。n轮过后,只剩下一名选手,该选手即为最终的冠军。

现在已知每位选手分别与其他选手比赛获胜的概率,请你预测一下谁夺冠的概率最大。

输入格式

输入文件elimination.in。第一行是一个整数n(l≤n≤l0),表示总轮数。接下来2^n行,每行2^n个整数,第i行第j个是Pij(0≤pij≤100,Pii=0,Pij+Pji=100),表示第i号选手与第j号选手比赛获胜的概率。

输出格式

输出文件elimination.out。只有一个整数c,表示夺冠概率最大的选手编号(若有多位选手,输出编号最小者)。

输入输出样例

输入 #1
  2
0 90 50 50
10 0 10 10
50 90 0 50
50 90 50 0
输出 #1
 1

说明/提示

30%的数据满足n≤3;100%的数据满足n≤10。

_NOI导刊2010提高(01)

分析:

一道较为有思考难度的DP,通过考虑每次原位置的变化进行DP即可。

CODE:

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
const int M=;
const double esp=0.000001;
const double hyh=0.999;
double f[M][];
int win[M][M];
int n;
int get(){
char c=getchar();
int res=,f=;
while (c>''||c<''){
if (c=='-') f=-;
c=getchar();
}
while (c<=''&&c>=''){
res=(res<<)+(res<<)+c-'';
c=getchar();
}
return res*f;
}
double maxn;
int pos;
int main(){
n=get();
long long m=(<<n);
for (int i=;i<=m;i++)
for (int j=;j<=m;j++)
win[i][j]=get();
for (int i=;i<=m;i++) f[i][]=;
for (int i=;i<=n;i++){
for (int j=;j<=m;j++){
int posi=(int)(j*1.0/(<<(i-))+hyh);
//int posi=ceil((double)j/(1<<(i-1)));
int posx=(posi&)?posi+:posi-;
for (int k=posx*(<<(i-))-(<<(i-))+;k<=posx*(<<(i-));k++)
f[j][i]+=f[j][i-]*win[j][k]/*f[k][i-];
//cout<<f[j][i]<<endl;
}
}
for (int i=;i<=m;i++){
if (f[i][n]>maxn+esp) maxn=f[i][n],pos=i;
//cout<<f[i][n]<<endl;
}
cout<<pos<<endl;
return ;
}

淘汰赛制_NOI导刊2010提高(01)的更多相关文章

  1. 洛谷 P1769 淘汰赛制_NOI导刊2010提高(01)

    P1769 淘汰赛制_NOI导刊2010提高(01) 题目描述 淘汰赛制是一种极其残酷的比赛制度.2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐.每一轮中,将所有参加 ...

  2. Luogu1769 淘汰赛制_NOI导刊2010提高(01)(概率DP)

    第\(i\)次位置在\(pos_0 / 2^{i - 1}\) #include <iostream> #include <cstdio> #include <cstri ...

  3. P1771 方程的解_NOI导刊2010提高(01)

    P1771 方程的解_NOI导刊2010提高(01) 按题意用快速幂把$g(x)$求出来 发现这不就是个组合数入门题吗! $k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法? 根据插板法, ...

  4. 方程的解_NOI导刊2010提高(01) 组合数

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  5. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  6. P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化

    多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...

  7. P1794 装备运输_NOI导刊2010提高(04)

    P1794 装备运输_NOI导刊2010提高(04) 题目描述 德国放松对英国的进攻后,把矛头指向了东边——苏联.1943年初,东线的战斗进行到白热化阶段.据可靠情报,90余万德国军队在库尔斯克准备发 ...

  8. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)

    P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...

  9. P1799 数列_NOI导刊2010提高(06)

    P1799 数列_NOI导刊2010提高(06)f[i][j]表示前i个数删去j个数得到的最大价值.if(i-j==x) f[i][j]=max(f[i][j],f[i-1][j]+1); else ...

随机推荐

  1. Linux关闭重启系统

    reboot:重启系统 - 需要root权限 halt:关机 - 需要root权限 poweroff:关机 - 可直接运行

  2. shell条件判断命令test

  3. Nginx学习总结(一)

    Nginx是目前比较主流的HTTP反向代理服务器(其企业版提供了基于TCP层的反向代理插件),对于构建大型分布式web应用,具有举足轻重的作用.简单来说,nginx有2个主要的功能:动/静态资源分离. ...

  4. ivew 绑定时间控件

    <FormItem label="开始时间" style="width: 100%" prop="startDate"> < ...

  5. Python 语音识别

    调用科大讯飞语音听写,使用Python实现语音识别,将实时语音转换为文字. 参考这篇博客实现的录音,首先在官网下载了关于语音听写的SDK,然后在文件夹内新建了两个.py文件,分别是get_audio. ...

  6. STM32F103系列命名规则

    对于STM32F103xxyy系列:第一个x代表引脚数:T-36pin,C-48pin,R-64pin,V-100pin,Z-144pin:第二个x代表Flash容量:6-32K,8-64K,B-12 ...

  7. Spring---基础配置

    1.@Scope 1.1.描述了Spring容器如何新建Bean的实例: 1.2.@Scope(value="") value值有: 1.2.1.singleton 一个Sprin ...

  8. springMVC接收请求参数的几种方式

    1.  用注解@RequestParam绑定请求参数 用注解@RequestParam绑定请求参数a到变量a,当请求参数a不存在时会有异常发生,可以通过设置属性required=false解决,例如: ...

  9. 线程join方法 小demo

    1.第一个示例: package cn.threaddemo; public class T implements Runnable { public static int a = 0; @Overr ...

  10. 重磅干货免费下载!阿里云RDS团队论文被数据库顶会SIGMOD 2018收录

    ACM SIGMOD数据管理国际会议是由美国计算机协会(ACM) 数据管理专业委员会(SIGMOD)发起.在数据库领域具有最高学术地位的国际性学术会议. SIGMOD和另外两大数据库会议VLDB.IC ...