【BZOJ3930】[CQOI2015]选数

Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1≤N,K≤10^9,1≤L≤H≤10^9,H-L≤10^5

题解:先令l=(L-1)/K+1,r=(H-1)/K+1,于是所求变成了:

然后用杜教筛,注意l<d的情况

#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#define mod 1000000007
using namespace std;
const int m=1000000;
typedef long long ll;
map<ll,ll> mp;
int num;
int mu[m+10],pri[m/10];
bool np[m+10];
ll sm[m+10];
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
ll getsm(ll x)
{
if(x<=m) return sm[x];
if(mp.find(x)!=mp.end()) return mp[x];
ll ret=1,i,last;
for(i=2;i<=x;i=last+1)
{
last=x/(x/i);
ret=(ret-(last-i+1)*getsm(x/i)+mod)%mod;
}
mp[x]=ret;
return ret;
}
int main()
{
ll i,j,last,ans=0;
ll N,K,L,H;
sm[1]=mu[1]=1;
for(i=2;i<=m;i++)
{
if(!np[i]) pri[++num]=i,mu[i]=-1;
sm[i]=sm[i-1]+mu[i];
for(j=1;j<=num&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
scanf("%lld%lld%lld%lld",&N,&K,&L,&H),L=(L-1)/K,H=H/K;
for(i=1;i<=H;i=last+1)
{
if(i<=L) last=min(L/(L/i),H/(H/i));
else last=H/(H/i);
ans=(ans+(getsm(last)-getsm(i-1)+mod)*pm((H/i-L/i),N))%mod;
}
printf("%lld",ans);
return 0;
}

【BZOJ3930】[CQOI2015]选数 莫比乌斯反演的更多相关文章

  1. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  2. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  3. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  4. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  5. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  6. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  7. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  8. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  9. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

随机推荐

  1. Node.js nvshens图片批量下载爬虫 1.00

    //====================================================== // www.nvshens.com图片批量下载Node.js爬虫1.00 // 此程 ...

  2. pip安装mysql报错 ld: library not found for -lssl

    ld: library not found for -lssl clang: error: linker command failed with exit code (use -v to see in ...

  3. jetty.xml解析

    我们知道jetty有一种启动方式是在jetty的根目录中运行命令行:java -jar start.jar,这个命令会调用apache的XmlConfiguration工具类作为启动类,这个类会默认读 ...

  4. MySQL学习总结(一)下载与安装

    关于数据库这块平时用的也就是Oracle和SQL Server,关于别的数据库也就是耳闻,但从没有用过.所以,最近一直都在学习使用MySQL数据库,这个教程也是通过记录博客,增加学习的印象. 关于My ...

  5. linux 查看cpu相关信息命令

  6. rsync权限操作

    rsync对目的端权限如果不使用 -a 或者-p   -a=-rlptgoD 目的端的目录和文件权限不会改变 同步过程中改变目录和文件权限用法: rsync -rltDvP --chmod=Dugo= ...

  7. C语言基础(14)-递归

    一. 递归的定义 函数可以调用自己,这就叫函数的递归. 先序递归和后序递归 #include <stdio.h> void test(int n); void test1(int n); ...

  8. git设置及常用命令

    下载 下载地址:https://git-scm.com/downloads windows系统安装 默认安装即可. 其它系统安装方式请自行百度,网上教程很多. 设置 windows桌面右键,选择Git ...

  9. Jenkins构建脚本中启动tomcat关键

    一.启动tomcat 来源: http://blog.csdn.net/prisonbreak_/article/details/50749576(给出方法) http://veryyoung.me/ ...

  10. 椭圆曲线ECC基本概念

    椭圆曲线的曲线方程是以下形式的三次方程: y2+axy+by=x3+cx2+dx+e a,b,c,d,e是满足某些简单条件的实数.定义中包含一个称为无穷点的元素,记为O 如果其上的3个点位于同一直线上 ...