题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

【思路1】每个台阶都有跳与不跳两种可能性(最后一个台阶除外),最后一个台阶必须跳。所以共用2^(n-1)中情况。

 class Solution {
public:
int jumpFloorII(int number) {
return <<--number;
//1左移number-1位,即2的number-1次幂
//return pow(2, number - 1);
}
};

【思路2】

关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2)

f(3) = f(3-1) + f(3-2) + f(3-3)

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)

 由以上可以继续简化:

f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

可以得出:

f(n) = 2*f(n-1)

 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

             | 1       ,(n=0 ) 

  f(n) =     | 1       ,(n=1 )

             | 2*f(n-1),(n>=2)
 class Solution {
public:
int jumpFloorII(int number) {
int res[] = {};
res[] = ;
res[] = ;
for(int i = ;i < number;i ++)
res[i] = * res[i - ];
return res[number - ];
}
};

[剑指Offer] 9.变态跳台阶的更多相关文章

  1. [剑指Offer]2.变态跳台阶

    题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...

  2. Go语言实现:【剑指offer】变态跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...

  3. 剑指OFFER之变态跳台阶(九度OJ1389)

    题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1 ...

  4. 剑指offer:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要 ...

  5. 剑指Offer 9. 变态跳台阶 (递归)

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/ ...

  6. 牛客网-《剑指offer》-变态跳台阶

    C++ class Solution { public: int jumpFloorII(int n) { <<--n; } }; 推导: 关于本题,前提是n个台阶会有一次n阶的跳法.分析 ...

  7. 【剑指offer】变态跳台阶

    一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1) ...

  8. 剑指offer 09变态跳台阶

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...

  9. 《剑指offer》变态跳台阶

    一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 n级台阶 三.输出描述 一共有多少种不同的跳法 四.牛客网提 ...

随机推荐

  1. 使用Python对MySQL数据库操作

    本文介绍Python3使用PyMySQL连接数据库,并实现简单的增删改查. 什么是PyMySQL? PyMySQL是Python3.x版本中用于连接MySQL服务器的一个库,Python2.x中则使用 ...

  2. Mysql 查看连接数,状态,最大并发数

    MySQL: ERROR 1040: Too many connections”的异常情况,造成这种情况的一种原因是访问量过高,MySQL服务器抗不住,这个时候就要考虑增加从服务器分散读压力:另一种原 ...

  3. 微信小程序播放视频

    <view class="section tc"> <video id="myVideo" src="http://wxsnsdy. ...

  4. npm 如何提升最新版本

    首先我们查看一下npm当前版本,打开cmd 运行命令: npm -v 如果不是最新版本,运行一下代码即可. npm install -g npm 这样npm就更新到最新版本了. 如果想更新到指定版本, ...

  5. RubyMine常用快捷键

    一级必会 Shift+F10:运行running Ctrl+Alt+R:弹出RakeCtrl+Alt+G:弹出GenerateCtrl+Alt+L:格式化代码Alt+F1:切换视图(Project, ...

  6. (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现

    一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...

  7. The Road to learn React书籍学习笔记(第三章)

    The Road to learn React书籍学习笔记(第三章) 代码详情 声明周期方法 通过之前的学习,可以了解到ES6 类组件中的生命周期方法 constructor() 和 render() ...

  8. 11 TCP实现QQ聊天

    1.客户端参考代码 #coding=utf-8 from socket import * # 创建socket tcpClientSocket = socket(AF_INET, SOCK_STREA ...

  9. Service ANR问题

    错误堆栈: ActivityManager: ANR in com.oppo.reader PID: 8071 Reason: executing service com.oppo.reade//co ...

  10. IDA动态调试SO文件

    1. 所需工具 IDA Pro 6.6. 安卓SDK工具 2. 模拟器设置 将ida所在目录的dbgsrv文件夹内的android_server文件push到模拟器中. 设置777属性 启动调试服务器 ...