bzoj 5028: 小Z的加油店——带修改的区间gcd
Description
Input
Output
Sample Input
2 3 4
1 1 3
2 2 2 1
1 1 3
1 2 3
Sample Output
2
4
HINT
有可能出现L>R
——————————————————————————————
考虑一下更相减损术 题目就转换成了求区间gcd(带修改
这是一波套路题 考虑gcd(a,b,c,d,e)=gcd(a-b,b-c,c-d,d-e,e)
所以我们可以维护一下差分 也就是类似a-b这样的东西
这样之后区间l->r +v 就变成了 l-1 - v r +v
当然注意最后的e是不带差分的 所以还要维护一下原序列 方便查询右端点r
所以需要的操作就是 维护原序列的差分(单点修改区间查gcd)和原序列本身(区间加单点查询)
#include<cstdio>
#include<cstring>
#include<algorithm>
const int M=1e5+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,m,p;
int N,g[*M],bit[M],h[M];
int gcd(int x,int y){
while(y){p=x%y; x=y; y=p;}
return x;
}
void tr_modify(int x,int v){
g[x+=N]+=v;
for(x>>=;x;x>>=) g[x]=gcd(g[x<<],g[x<<^]);
}
#define lowbit(x) x&-x
int s[M];
void bit_insert(int x,int v){
while(x<=n){
s[x]+=v;
x+=lowbit(x);
}
}
int bit_query(int x){
int ans=h[x];
while(x) ans+=s[x],x-=lowbit(x);
return ans;
}
void modify(int l,int r,int v){
bit_insert(l,v); tr_modify(l-,-v);
bit_insert(r+,-v); tr_modify(r,v);
}
int push_ans(int l,int r){
int ans=bit_query(r);
for(l=l+N-,r=r+N;r-l!=;l>>=,r>>=){
if(~l&) ans=gcd(ans,g[l^]);
if(r&) ans=gcd(ans,g[r^]);
}
if(ans<) ans=-ans;
return ans;
}
void pd(int &x,int &y){if(x>y) std::swap(x,y);}
int main(){
int k,l,r,v;
n=read(); m=read();
for(int i=;i<=n;i++) h[i]=read();
for(N=;N<=n+;N<<=);
for(int i=;i<n;i++) g[i+N]=h[i]-h[i+];
for(int i=N-;i;i--) g[i]=gcd(g[i<<],g[i<<^]);
for(int i=;i<=m;i++){
k=read();
if(k==) l=read(),r=read(),pd(l,r),printf("%d\n",push_ans(l,r));
else l=read(),r=read(),v=read(),pd(l,r),modify(l,r,v);
}
return ;
}
bzoj 5028: 小Z的加油店——带修改的区间gcd的更多相关文章
- BZOJ 5028 小Z的加油店
[题解] 本题要求求出区间内的各个元素通过加减之后能够得出的最小的数,那么根据裴蜀定理可知答案就是区间内各个元素的最大公约数. 那么本题题意化简成了维护一个序列,支持区间加上某个数以及查询区间元素的最 ...
- 5028: 小Z的加油店(线段树)
NOI2012魔幻棋盘弱化版 gcd(a,b,c,d,e)=gcd(a,b-a,c-b,d-c,e-d) 然后就可以把区间修改变成差分后的点修了. 用BIT维护原序列,线段树维护区间gcd,支持点修区 ...
- 【BZOJ】5028: 小Z的加油店
[算法]数学+线段树/树状数组 [题解] 首先三个操作可以理解为更相减损术或者辗转相除法(待证明),所以就是求区间gcd. 这题的问题在线段树维护gcd只能支持修改成一个数,不支持加一个数. 套路:g ...
- BZOJ 5028 小z的加油站
bzoj链接 Time limit 10000 ms Memory limit 262144 kB OS Linux 感想 树上动态gcd的第二题也好了. [x] BZOJ 2257 [JSOI200 ...
- D - 小Z的加油店 线段树+差分+GCD
D - 小Z的加油店 HYSBZ - 5028 这个题目是一个线段树+差分+GCD 推荐一个差分的博客:https://www.cnblogs.com/cjoierljl/p/8728110.ht ...
- [BZOJ5028]小Z的加油店
[BZOJ5028]小Z的加油店 题目大意: 一个长度为\(n(n\le10^5)\)的数列,\(m(m\le10^5)\)次操作,支持区间加和区间\(\gcd\). 思路: 线段树维护差分,\(\g ...
- bzoj5028小Z的加油店(线段树+差分)
题意:维护支持以下两种操作的序列:1 l r询问a[l...r]的gcd,2 l r x把a[l...r]全部+x 题解:一道经典题.根据gcd(a,b)=gcd(a-b,b)以及区间加可知,这题可以 ...
- 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...
- bzoj 4031: 小Z的房间 矩阵树定理
bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时 ...
随机推荐
- java冒泡算法
public static void maopao() { int temp; int[] values = {2, 34, 0, 245}; for (int i = 0; i < value ...
- 2016.01.04接触spring一年开始读spring源码
http://www.cnblogs.com/xing901022/p/4178963.html#_label0 遇到第一个问题The processing instruction target ma ...
- 白话HMM系列1——从一个缩略语还原的例子说起
HMM到底是一个什么样的东西,我想从我研究的一个应用场景开始说起.之所以想重新描述一下我对HMM的理解,是因为上次面试百度糯米的时候,自己没有把HMM在应用上说的很明白,不过糯米的那位郑姓面试官我也是 ...
- 【个人训练】(UVa146)ID Codes
题意与解析 这题其实特别简单,求给定排列的后继.使用stl(next_permutation)可以方便地解决这个问题.但是,想要自己动手解就是另外一回事了.我的解法是从后往前找到第一个$a_i$比$a ...
- Selenide 简单实现自动化测试
Selenide 网址:http://selenide.org/ github 地址:https://github.com/codeborne/selenide Selenide 早些年一直使用,中间 ...
- (原)UnrealObj篇 : 反射获取Struct类型
@Author: 白袍小道 转载请说明 案例一:蓝图传递任意Struct ,导出struct的相关属性 相关: 1.宏:DECLARE_FUNCTION: 此宏用于在自动生成的样板代码中声明t ...
- [转载]压力测试工具siege的用法
压力测试工具siege 原文:http://blog.csdn.net/qingye2008/article/details/34500949 Siege是Linux下的一个web系统的压力测试工具, ...
- Visual Studio 2013安装包
点击下载
- 深度可分卷积(Depthwise Separable Conv.)计算量分析
上次读到深度可分卷积还是去年暑假,各种细节都有些忘了.记录一下,特别是计算量的分析过程. 1. 标准卷积和深度可分卷积 标准卷积(MobileNet论文中称为Standard Convolution, ...
- MongoDB复制二:复制集的管理
1.修改oplog的大小 需要在每个机器上都配置.先在secondary上操作,最后在primary上操作. 1)以单机的方式重启复制集的实例 db.shutdownServer() 在新的端口中启 ...