Catalan数列
引入
今天听学长讲了卡特兰数列后对其有了更深的认识,在此完善了一下之前的博客加以总结。
首先用一个经典的例子来描述一下Catalan数列,我们有一个1~n的数列和一个大小为n的栈,我们有如下两种操作:
- 当未入栈序列不为空时,使序列的第一个元素入栈。
- 当栈不为空时,使栈顶元素出栈。
我们可以显然地发现,如果我们选择操作的顺序不同,我们最后所形成的出栈序列也不相同,那么有多少种出栈序列呢?
而这个数列中的C(n),就是我们所定义的Catalan数列。
如果我们把所有每一次的操作都写出来,可以得到一个关于1和2的操作序列,这个序列有以下性质:
- 共有2n项且n项为1,n项为2。
- 从左往右1的个数永远不少于2的个数。
定义
通项公式
通项公式推导
方法1:数学方法,摘自某大老的PPT,表示不是很了解,在此向各位大佬请教。
即
(注意他证明过程中的初值是
)
方法2:组合数证明法
我们设定一个情景:假设一个点从A(0,0)出发走到B(n,n),我们定义两种走的方法:
- 往右走。
- 往上走。
我们从A走到B,一共要走2n步,其中n步为1,n步为2,这样我们从A走到B的方案也就可以转化为一个1和2的序列了,而所有的1和2的序列构成的排列,即为从A走到B的方案数:
相较之于引言中所提到的序列,要使通过这种情景生成的序列是满足Catalan的数列的方案序列,我们需要的充要条件是从左往右1的个数永远比2的个数少(即向上走过的次数不少于向右走过的次数),即所走的路径只存在于紫线的上部,而这个条件等价于所形成的路径与绿线没有交点。我们已经知道了所有的方案数,我们只需要求出不满足条件的方案数就可以了。
举出一个反例(红线)我们把这条线与绿线的第一个交点之后的部分都关于绿线对称得到蓝线部分,加上前面的部分与之形成的路径构成了一条从A(0,0)走向C(n+1,n-1)的路径,我们可以发现这样的蓝线有以下三条性质:
- 蓝线只向上走和向右走,且重点为C(n+1,n-1)。
- 对于每一条符合性质1的蓝色路径都有且只有一条不合法的红色路径与之对应。
- 对于每一条不合法的红色路径有且只有一条满足性质1的蓝色路径与之对应。
由此,我们可以发现不合法的红色路径与满足上述性质的蓝色路径一一对应,所以不合法路径数就是蓝色路径数,为
所以,所有合法的路径数为:,即Catalan的第n个数为
推论
- n个左括号和n个右括号组成的合法括号序列的数量为Cat(n)。
- 1,2,···,n经过一个栈,形成的合法出栈序列的数量为Cat(n)。
- n个结点构成的不同二叉树的数量为Cat(n)。
- 在平面直角坐标系上每一步只能向右或向上走,从(0,0)走到(n,n)并且除两个端点外不接触直线 y = x的路线数量为Cat(n)。
- 推广:在平面直角坐标系上,每一步只能向右或上走一步,从(0,0)走到(n,m)(n ≥m)并且除两个点外不接触直线 y = x 的路线的数量为
- 推广:在平面直角坐标系上,每一步只能向右或上走一步,从(0,0)走到(n,m)(n ≥m)并且除两个点外不接触直线 y = x 的路线的数量为
Catalan数列的更多相关文章
- Catalan 数列的性质及其应用(转载)
转自:http://lanqi.org/skills/10939/ 卡特兰数 — 计数的映射方法的伟大胜利 发表于2015年11月8日由意琦行 卡特兰(Catalan)数来源于卡特兰解决凸$n+2$边 ...
- 什么是 Catalan 数列以及其应用
引言 在开始论述之前,我想请大家先看下这几个问题: 有 \(2n\) 个人排成一行进入剧场.入场费 5 元.其中只有 \(n\) 个人有一张 5 元钞票,另外 \(n\) 人只有 10 元钞票,剧院无 ...
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2105 Solved: 1117[Submit][Stat ...
- catalan数及笔试面试里那些相关的问题(转)
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项 ...
- bzoj1485:[HNOI2009]有趣的数列
思路:首先限制数很多,逐步来考虑,限制一很容易满足,考虑限制二,也就是让奇数位和偶数位上的数递增,限制三就是让奇数位上的数小于奇数位加一对应的偶数位上的数,那么我们可以把形成序列的过程看成加数的过程, ...
- 从头说catalan数及笔试面试里那些相关的问题 (转)
作者:寒小阳 时间:2013年9月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/11938973. 声明:版权所有,转载请注明出处,谢谢 ...
- Catalan数计算及应用
Catalan数列是非常奇妙的一列数字,因为很多问题的解就是一个Catalan数.知道了这一规律,很多看似复杂的问题便可迎刃而解.那么什么是Catalan数,什么样的问题的解是Catalan数呢? 1 ...
- caioj 1204 Catalan数(模板)
题目中对卡特兰数的总结很不错 以下copy自题目 Catalan数列:1,1,2,5,14,42,(前面几个要背) 即 h(0)=1,h(1)=1,h(2)=2,h(3)=5...公式:h(n)=C( ...
- Trees Made to Order——Catalan数和递归
Trees Made to Order Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7155 Accepted: 40 ...
随机推荐
- 从零开始学Linux(11)--more
more命令,是将文件的内容从上到下显示在屏幕上. more会以一页一页的显示方便使用者逐页阅读,而最基本的指令就是按空格键(space)就往下一页显示,按 b 键就会往回(back)一页显示,而且还 ...
- Python学习 day04
一.list list可以存放各种类型的数据,与java中list类差不多,比如li = ['keith', 1, True, [1, 2, 3], {name: 'tangtang', age: 1 ...
- 解决 command not found: express
需要先执行 sudo npm install -g express-generator 再安装 sudo npm install -g express 建立项目骨架 express -e xxx
- 生成正射影像/DSM,等高线提取
工具:ContextCapture,Globe Mapper 方法/步骤: 1.新建项目,导入影像,提交空三运算 在ContextCapture中新建项目,添加相关影像或视频和其他相关资源,资源,提交 ...
- PHP SECURITY CALENDAR 2017 学习总结-更新中
这篇文章主要以审计代码为主来分析每道题目中所存在的漏洞点,记录一下自己的学习: 1.Day 1 - Wish List class Challenge { const UPLOAD_DIRECTORY ...
- 【VMware】VMware的安装和更改虚拟机默认存储路径
1.VMware Workstation 14中文破解版安装 网盘下载链接:https://pan.baidu.com/s/1pbDXpgpNQTdTRzzKNWfE1A linux镜像(CentOS ...
- 设置session超时的三种方式
设置session超时的三种方式 1. 在容器中设置:如在tomcat-7\conf\web.xml中设置 Tomcat默认session超时时间为30分钟,可以根据需要修改,负数或0为不限制sess ...
- CentOS-7 本地yum源挂载
在Linux无法连接到互联网时,手动安装依赖是及其麻烦的一件事,需要花费大量的时间寻找rpm包.但在配置本地yum源后,绝决依赖问题就会变得非常简单. 一.准备 centos-7.ISO镜像文件: 二 ...
- 设置cssrem,设置emmet
1.文件->首选项->设置 2.搜索cssrem-> 点击设置:"cssrem.rootFontSize": 16, 4.emmet
- Java开发坏境配置
在"系统变量"中设置3项属性,JAVA_HOME,PATH,CLASSPATH(大小写无所谓),若已存在则点击"编辑",不存在则点击"新建" ...