ML 神经网络 NeuralNetworks
神经网络
Neural Networks
1 为什么要用神经网络?
既然前面降了逻辑回归,为什么还需要神经网络呢?前面我们制定在非线性分类问题中,也可以使用逻辑回归进行分类,不过我们的特征变量就变成了原始特征的高阶多项式。假设有100个特征变量,要使用逻辑回归进行分类的话,特征就呈指数增长,不仅计算量十分大,而且很容易过拟合。
2 模型表示
神经元模型
单个神经元可以是一个逻辑回归模型。
基本神经网络
由多个神经元组成,一般有输入层、隐层和输出层。
写成向量形式:
3 举例Examples and intuitions
首先我们看看sigmoid函数的大致图像,对于线性的分类,我们使用一个神经元就可以完成了。
而对于非线性的分类,例如XNOR运算,我们将多个神经元组成一个神经网络可以表达更复杂的模型。
多分类
4 代价函数 cost function
先回顾一下逻辑回归的代价函数:
现在给出神经网络的代价函数:
正则项其实就是把除了偏置外所有的参数相加。
5 后向传播算法Backpropagation algorithm
我们要使用梯度下降来计算参数时,需要计算出和
先使用前向传播算法:
然后计算出每层的残差,进行后向传播:
由于输入层直接使用的是输入数据,不存在误差,所以只用计算到第二层。
具体的算法:
Backpropagation algorithm Training set Set For Set Perform forward propagation to compute Using Compute |
梯度检验
在进行后向传播算法训练参数前,为了确保我们的代码计算偏导是正确的,我们可以使用梯度检验。其实就是用数值计算偏导的方法。不过在训练时,一定要记得把梯度检验关掉,因为数值计算偏导十分耗时。
6 随机初始化 Random initialization
在线性回归和逻辑回归中,我们对参数初始化都是赋值为0,那么我们在神经网络中是否也可以全部赋值为0 呢?这样是不行的,如果全部赋值为0,那么每层的每个单元会学习到同样的参数,每个单元也就无法体现出自己的效果了。所以我们要打破这种情况,采取随机初始化。
7 总结 Putting it together
对于一个神经网络,有输入,输出和隐层,那么我们如何去选择每层有多少单元呢?输入层和输出层的结构我们根据要解决的问题要选定,那么对于隐层我们一般会选取含有同样个数的单元。
训练一个神经网络的主要步骤:
- 随机初始化权重。
- 使用向前传播算法,对于每一个输入计算得到
- 计算代价函数
- 使用后向传播算法计算偏导
- 用梯度检验验证的正确性(训练的时候记得要把梯度检验关掉)
- 使用梯度下降法最小化,求出参数。
是一个非凸的,可能收敛到局部最小。
ML 神经网络 NeuralNetworks的更多相关文章
- 初识神经网络NeuralNetworks
1.神经网络的起源 在传统的编程方法中,我们通常会告诉计算机该做什么,并且将一个大问题分解为许多小的.精确的.计算机可以轻松执行的任务.相反,在神经网络中,我们不告诉计算机如何解决问题,而是让计算机从 ...
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(二)引入attention机制
在上一篇博客中介绍的论文"Show and tell"所提出的NIC模型采用的是最"简单"的encoder-decoder框架,模型上没有什么新花样,使用CNN ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...
- [置顶] NB多项式事件模型、神经网络、SVM之函数/几何间隔——斯坦福ML公开课笔记6
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9722701 本篇笔记针对斯坦福ML公开课的第6个视频,主要内容包括朴素贝叶斯 ...
- 一位ML工程师构建深度神经网络的实用技巧
一位ML工程师构建深度神经网络的实用技巧 https://mp.weixin.qq.com/s/2gKYtona0Z6szsjaj8c9Vg 作者| Matt H/Daniel R 译者| 婉清 编辑 ...
- ML(5)——神经网络3(随机初始化与梯度检验)
随机初始化 在线性回归和逻辑回归中,使用梯度下降法之前,将θ设置为0向量,有时会习惯性的将神经网络中的权重全部初始化为0,然而这在神经网络中并不适用. 以简单的三层神经网络为例,将全部权重都设置为0, ...
- ML(5)——神经网络2(BP反向传播)
上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全 ...
- ML(5)——神经网络1(神经元模型与激活函数)
上一章介绍了使用逻辑回归处理分类问题.尽管逻辑回归是个非常好用的模型,但是在处理非线性问题时仍然显得力不从心,下图就是一个例子: 线性模型已经无法很好地拟合上面的样本,所以选择了更复杂的模型,得到了复 ...
- Coursera ML笔记 - 神经网络(Representation)
前言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自Standford Andrew N ...
随机推荐
- zookeeper 命令行使用
先用简易的客户端链接上 默认链接的就是本机上面的zkserver 我一上来help 下.没办法 ,用的少,先喊一声救命 ,看看有没有人救我! [zk: localhost:2181(CONNECTED ...
- 在执行save操作时候出现的诡异!
情景:有一份excel数据需要导入到数据库中,想了想就写了一个导入excel的小功能. .............................准备使用时候,就开搞了,擦! 什么鬼??? 全程无报错 ...
- 基于apache —HttpClient的小爬虫获取网页内容
今天(17-03-31)忙了一下午研究webmagic,发现自己还太年轻,对于这样难度的框架(类库) 还是难以接受,还是从基础开始吧,因为相对基础的东西教程相多一些,于是乎我找了apache其下的 H ...
- C#中的自定义控件中的属性、事件及一些相关特性的总结(转)
摘要: C#中的自定义控件中的属性(Property).事件(Event)及一些相关特性(Attribute)的总结 今天学习了下C#用户控件开发添加自定义属性的事件,主要参考了MSDN,总结并实 ...
- 修改 /var/lib/locales/supported.d/local 文件(使用 locale -a 命令查看系统中所有已配置的 locale)
转自:http://zyxhome.org/wp/cc-prog-lang/c-stdlib-setlocale-usage-note/ http://www.west263.com/info/htm ...
- XE2安装JVCL
XE2安装JVCL1. 下载:要分别下载JCL和JVCL安装包,不可以图省事不下载前者.http://sourceforge.net/projects/jcl/files/JCL%20Releases ...
- Redis作者谈Redis应用场景(转)
add by zhj : 这是Redis的作者antirez在他的技术博客中写的一篇文章 英文原文:take-advantage-of-redis-adding-it-to-your-stack 译文 ...
- python函数回顾:setattr()
描述 setattr 函数对应函数 getatt(),用于设置属性值,该属性必须存在. 语法 setattr 语法: setattr(object, name, value) 参数 object -- ...
- Datetime 模块求日期差
Datetime 模块求日期差 导入 datetime 模块/实例化当前时间对象 调用.date() 方法 得到当前年/月/日时间 实例化时间差对象 delta 求当前日期减去时间差 delta 后的 ...
- Android测试读写sd卡文件与写sd卡文件耗时
测试从sd卡读1k大小的文件,再写1k大小的文件,由于处理耗时很短,所以循环500次,查看耗时:测试写1k大小的文件,直接在内存构造一个1k的buffer,将这个buffer直接写到文件,同样循环50 ...