数位dp模版(dp)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int t;
long long dp[][][];
long long l, r;
int shu[]; long long dfs(int len,..., bool shangxian)
{
if (len == )
return ...;
if (!shangxian && dp[len][...])
return dp[len][...]; //dp数组的内容应和dfs调用参数的内容相同,除了是否达到上限
long long cnt = ;
int maxx = (shangxian ? shu[len] : );
for (int i = ; i <= maxx; i++)
{
...;
cnt += dfs(len - ,..., shangxian && i == maxx);
}
if (!shangxian)
dp[len][...] = cnt;
return cnt;
} long long solve(long long x)
{
int k = ;
while (x)
{
shu[++k] = x % ;
x /= ;
}
return dfs(k,...,)
} int main()
{
memset(dp, , sizeof(dp));
scanf("%lld%lld", &l, &r); //有些题目其实并不需要用到long long
printf("%lld\n", solve(r) - solve(l - )); //只有满足区间减法才能用 //while (1);
return ;
}
数位dp是一种计数用的dp,一般就是统计一个区间[l,r]内满足一些条件数 的个数,所谓数位dp,字面意思就是在数位上dp。数位的含义:一个数有个位,十位,百位,千位···数的每一位就是数位。
之所以要引入数位的概念完全就是为了dp。数位dp的实质就是换一种暴力枚举的方式,使新的枚举方式满足dp的性质,然后记忆化即可。
两种不同的枚举:对于一个求区间[l,r]满足条件数的个数,最简单的暴力如下:
for(int i=l;i<=r;i++)
if(right(i))
ans++;
然而这样枚举不方便记忆化,或者根本无状态可言。
数位dp模版(dp)的更多相关文章
- CodeForces 54C-First Digit Law(数位,概率dp)
题意: 给你n个区间,在每个区间里各取一个数(随机取),求这n个数中超过K%的数是首位为1数的概率 分析: dp[i][j]取前i个数,有j个是首位为1的数的概率 易知,dp[i][j]=dp[i-1 ...
- 数位dp模板 [dp][数位dp]
现在才想到要学数位dp,我是不是很弱 答案是肯定的 以一道自己瞎掰的题为模板 //题: //输入数字n //从0枚举到n,计算这n+1个数中含有两位数a的数的个数 //如12930含有两位数93 #i ...
- DP套DP HDOJ 4899 Hero meet devil(国王的子民的DNA)
题目链接 题意: 给n长度的S串,对于0<=i<=|S|,有多少个长度为m的T串,使得LCS(S,T) = i. 思路: 理解的不是很透彻,先占个坑. #include <bits/ ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- 377. Combination Sum IV——DP本质:针对结果的迭代,dp[ans] <= dp[ans-i] & dp[i] 找三者关系 思考问题的维度+1,除了数据集迭代还有考虑结果
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- HDU4960Another OCD Patient(间隙dp,后座DP)
Another OCD Patient Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Ot ...
- [CF697D]Puzzles 树形dp/期望dp
Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
随机推荐
- 集群hadoop ubuntu版
搭建ubuntu版hadoop集群 用到的工具:VMware.hadoop-2.7.2.tar.jdk-8u65-linux-x64.tar.ubuntu-16.04-desktop-amd64.is ...
- 用AngularJS操作DOM
在angular中使用第三方插件时最好都封装到指令(directives)中去,DOM操作也最好都解构到指令中. <!DOCTYPE html> <html lang="e ...
- 制作Windows10政府版的小白教程
制作Windows10政府版的小白教程 https://03k.org/make10entg.html 首先,宿主系统要比操作的系统新,因为低版本dism操作不了: 当然也可以单独下载ADK,提取最新 ...
- bootstrap-table 增加序号列(支持分页)
columns: [ { checkbox: true }, { title: '序号', align: 'center', halign: 'center', formatter: function ...
- nowcoder 提高组模拟赛 最长路 解题报告
最长路 链接: https://www.nowcoder.com/acm/contest/178/A 来源:牛客网 题目描述 有一张 \(n\) 个点 \(m\) 条边的有向图,每条边上都带有一个字符 ...
- mobx基本概念
mobx是一个简单可扩展的状态管理库,主要用来管理状态之间的依赖关系,可以使用在任何状态管理的场景,并不仅限于react. 结合mobx-react可以用在react中,结合mobx-vue可以用在v ...
- 【BZOJ 2241 打地鼠】
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1430 Solved: 908[Submit][Status][Discuss] Descripti ...
- 免费的dns服务器(更换dns服务器有时可以解决某些网站(如爱奇艺访问不了的问题))
首先百度提供的dns就是非常好用的dns,小编就把百度的dns作为首选180.76.76.76. 其次是阿里提供的dns223.5.5.5,响应速度非常的快,而且没有广告劫持. 再就是最通用的 ...
- POJ3349 Snowflake Snow Snowflakes (hash
Snowflake Snow Snowflakes Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 48624 Accep ...
- idea 导入spring 源码注意的问题
问题:idea导入spring 源码的步骤是: 首先从官网下载spring的源码:git clone https://github.com/spring-projects/spring-framewo ...