OpenCV代码提取: threshold函数的实现
threshold algorithm: The simplest image segmentation method.
All thresholding algorithms take a source image (src) and a threshold value (thresh) as input and produce an output image (dst) by comparing the pixel value at source pixel( x , y ) to the threshold. If src ( x , y ) > thresh , then dst ( x , y ) is assigned a some value. Otherwise dst ( x , y ) is assigned some other value.
Otsu binarization: in simple words, it automatically calculates a threshold value from image histogram for a bimodal image. (For images which are not bimodal,binarization won’t be accurate.). working with bimodal images, Otsu’s algorithmtries to find a threshold value (t) which minimizes the weighted within-class variance. It actually finds a value of t which lies in between two peaks such that variances to both classes are minimum.
Otsu's thresholding method involves iterating through all the possible threshold values and calculating a measure of spread for the pixel levels each side of the threshold, i.e. the pixels that either fall in foreground or background.The aim is to find the threshold value where the sum of foreground and background spreads is at its minimum.
Triangle algorithm: A line is constructed between the maximum of the histogram at brightness bmax and the lowest value bmin in the image. The distance d between the line and the histogram h[b] is computed for all values of b from b = bmin to b = bmax. The brightness value bo where the distance between h[bo] and the line is maximal is the threshold value, that is, threshold = bo. This technique is particularly effective when the object pixels produce a weak peak in the histogram.
图像二值化就是将图像上的像素点的灰度值设置为两个值,一般为0,255或者指定的某个值。
Otsu:
目前fbc_cv库中支持uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致。
实现代码threshold.hpp:
- // fbc_cv is free software and uses the same licence as OpenCV
- // Email: fengbingchun@163.com
- #ifndef FBC_CV_THRESHOLD_HPP_
- #define FBC_CV_THRESHOLD_HPP_
- /* reference: include/opencv2/imgproc.hpp
- modules/imgproc/src/thresh.cpp
- */
- #include <typeinfo>
- #include "core/mat.hpp"
- #include "imgproc.hpp"
- namespace fbc {
- template<typename _Tp, int chs> static double getThreshVal_Otsu_8u(const Mat_<_Tp, chs>& src);
- template<typename _Tp, int chs> static double getThreshVal_Triangle_8u(const Mat_<_Tp, chs>& src);
- template<typename _Tp, int chs> static void thresh_8u(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, uchar thresh, uchar maxval, int type);
- template<typename _Tp, int chs> static void thresh_32f(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, float thresh, float maxval, int type);
- // applies fixed-level thresholding to a single-channel array
- // the Otsu's and Triangle methods are implemented only for 8-bit images
- // support type: uchar/float, single-channel
- template<typename _Tp, int chs>
- double threshold(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst, double thresh, double maxval, int type)
- {
- FBC_Assert(typeid(uchar).name() == typeid(_Tp).name() || typeid(float).name() == typeid(_Tp).name()); // uchar || float
- if (dst.empty()) {
- dst = Mat_<_Tp, chs>(src.rows, src.cols);
- } else {
- FBC_Assert(src.rows == dst.rows && src.cols == dst.cols);
- }
- int automatic_thresh = (type & ~THRESH_MASK);
- type &= THRESH_MASK;
- FBC_Assert(automatic_thresh != (THRESH_OTSU | THRESH_TRIANGLE));
- if (automatic_thresh == THRESH_OTSU) {
- FBC_Assert(sizeof(_Tp) == 1);
- thresh = getThreshVal_Otsu_8u(src);
- } else if (automatic_thresh == THRESH_TRIANGLE) {
- FBC_Assert(sizeof(_Tp) == 1);
- thresh = getThreshVal_Triangle_8u(src);
- }
- if (sizeof(_Tp) == 1) {
- int ithresh = fbcFloor(thresh);
- thresh = ithresh;
- int imaxval = fbcRound(maxval);
- if (type == THRESH_TRUNC)
- imaxval = ithresh;
- imaxval = saturate_cast<uchar>(imaxval);
- if (ithresh < 0 || ithresh >= 255) {
- if (type == THRESH_BINARY || type == THRESH_BINARY_INV ||
- ((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < 0) ||
- (type == THRESH_TOZERO && ithresh >= 255)) {
- int v = type == THRESH_BINARY ? (ithresh >= 255 ? 0 : imaxval) :
- type == THRESH_BINARY_INV ? (ithresh >= 255 ? imaxval : 0) :
- /*type == THRESH_TRUNC ? imaxval :*/ 0;
- dst.setTo(v);
- }
- else
- src.copyTo(dst);
- return thresh;
- }
- thresh = ithresh;
- maxval = imaxval;
- } else if (sizeof(_Tp) == 4) {
- } else {
- FBC_Error("UnsupportedFormat");
- }
- if (sizeof(_Tp) == 1) {
- thresh_8u(src, dst, (uchar)thresh, (uchar)maxval, type);
- } else {
- thresh_32f(src, dst, (float)thresh, (float)maxval, type);
- }
- return 0;
- }
- template<typename _Tp, int chs>
- static double getThreshVal_Otsu_8u(const Mat_<_Tp, chs>& _src)
- {
- Size size = _src.size();
- const int N = 256;
- int i, j, h[N] = { 0 };
- for (i = 0; i < size.height; i++) {
- const uchar* src = _src.ptr(i);
- j = 0;
- for (; j <= size.width - 4; j += 4) {
- int v0 = src[j], v1 = src[j + 1];
- h[v0]++; h[v1]++;
- v0 = src[j + 2]; v1 = src[j + 3];
- h[v0]++; h[v1]++;
- }
- for (; j < size.width; j++)
- h[src[j]]++;
- }
- double mu = 0, scale = 1. / (size.width*size.height);
- for (i = 0; i < N; i++)
- mu += i*(double)h[i];
- mu *= scale;
- double mu1 = 0, q1 = 0;
- double max_sigma = 0, max_val = 0;
- for (i = 0; i < N; i++) {
- double p_i, q2, mu2, sigma;
- p_i = h[i] * scale;
- mu1 *= q1;
- q1 += p_i;
- q2 = 1. - q1;
- if (std::min(q1, q2) < FLT_EPSILON || std::max(q1, q2) > 1. - FLT_EPSILON)
- continue;
- mu1 = (mu1 + i*p_i) / q1;
- mu2 = (mu - q1*mu1) / q2;
- sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2);
- if (sigma > max_sigma) {
- max_sigma = sigma;
- max_val = i;
- }
- }
- return max_val;
- }
- template<typename _Tp, int chs>
- static double getThreshVal_Triangle_8u(const Mat_<_Tp, chs>& _src)
- {
- Size size = _src.size();
- const int N = 256;
- int i, j, h[N] = { 0 };
- for (i = 0; i < size.height; i++) {
- const uchar* src = _src.ptr(i);
- j = 0;
- for (; j <= size.width - 4; j += 4) {
- int v0 = src[j], v1 = src[j + 1];
- h[v0]++; h[v1]++;
- v0 = src[j + 2]; v1 = src[j + 3];
- h[v0]++; h[v1]++;
- }
- for (; j < size.width; j++)
- h[src[j]]++;
- }
- int left_bound = 0, right_bound = 0, max_ind = 0, max = 0;
- int temp;
- bool isflipped = false;
- for (i = 0; i < N; i++) {
- if (h[i] > 0) {
- left_bound = i;
- break;
- }
- }
- if (left_bound > 0)
- left_bound--;
- for (i = N - 1; i > 0; i--) {
- if (h[i] > 0) {
- right_bound = i;
- break;
- }
- }
- if (right_bound < N - 1)
- right_bound++;
- for (i = 0; i < N; i++) {
- if (h[i] > max) {
- max = h[i];
- max_ind = i;
- }
- }
- if (max_ind - left_bound < right_bound - max_ind) {
- isflipped = true;
- i = 0, j = N - 1;
- while (i < j) {
- temp = h[i]; h[i] = h[j]; h[j] = temp;
- i++; j--;
- }
- left_bound = N - 1 - right_bound;
- max_ind = N - 1 - max_ind;
- }
- double thresh = left_bound;
- double a, b, dist = 0, tempdist;
- // We do not need to compute precise distance here. Distance is maximized, so some constants can
- // be omitted. This speeds up a computation a bit.
- a = max; b = left_bound - max_ind;
- for (i = left_bound + 1; i <= max_ind; i++) {
- tempdist = a*i + b*h[i];
- if (tempdist > dist) {
- dist = tempdist;
- thresh = i;
- }
- }
- thresh--;
- if (isflipped)
- thresh = N - 1 - thresh;
- return thresh;
- }
- template<typename _Tp, int chs>
- static void thresh_8u(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, uchar thresh, uchar maxval, int type)
- {
- int i, j, j_scalar = 0;
- uchar tab[256];
- Size roi = _src.size();
- roi.width *= _src.channels;
- switch (type) {
- case THRESH_BINARY:
- for (i = 0; i <= thresh; i++)
- tab[i] = 0;
- for (; i < 256; i++)
- tab[i] = maxval;
- break;
- case THRESH_BINARY_INV:
- for (i = 0; i <= thresh; i++)
- tab[i] = maxval;
- for (; i < 256; i++)
- tab[i] = 0;
- break;
- case THRESH_TRUNC:
- for (i = 0; i <= thresh; i++)
- tab[i] = (uchar)i;
- for (; i < 256; i++)
- tab[i] = thresh;
- break;
- case THRESH_TOZERO:
- for (i = 0; i <= thresh; i++)
- tab[i] = 0;
- for (; i < 256; i++)
- tab[i] = (uchar)i;
- break;
- case THRESH_TOZERO_INV:
- for (i = 0; i <= thresh; i++)
- tab[i] = (uchar)i;
- for (; i < 256; i++)
- tab[i] = 0;
- break;
- default:
- FBC_Error("Unknown threshold type");
- }
- if (j_scalar < roi.width) {
- for (i = 0; i < roi.height; i++) {
- const uchar* src = _src.ptr(i);
- uchar* dst = _dst.ptr(i);
- j = j_scalar;
- for (; j <= roi.width - 4; j += 4) {
- uchar t0 = tab[src[j]];
- uchar t1 = tab[src[j + 1]];
- dst[j] = t0;
- dst[j + 1] = t1;
- t0 = tab[src[j + 2]];
- t1 = tab[src[j + 3]];
- dst[j + 2] = t0;
- dst[j + 3] = t1;
- }
- for (; j < roi.width; j++)
- dst[j] = tab[src[j]];
- }
- }
- }
- template<typename _Tp, int chs>
- static void thresh_32f(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, float thresh, float maxval, int type)
- {
- int i, j;
- Size roi = _src.size();
- roi.width *= _src.channels;
- const float* src = (const float*)_src.ptr();
- float* dst = (float*)_dst.ptr();
- size_t src_step = _src.step / sizeof(src[0]);
- size_t dst_step = _dst.step / sizeof(dst[0]);
- switch (type) {
- case THRESH_BINARY:
- for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
- for (j = 0; j < roi.width; j++)
- dst[j] = src[j] > thresh ? maxval : 0;
- }
- break;
- case THRESH_BINARY_INV:
- for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
- for (j = 0; j < roi.width; j++)
- dst[j] = src[j] <= thresh ? maxval : 0;
- }
- break;
- case THRESH_TRUNC:
- for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
- for (j = 0; j < roi.width; j++)
- dst[j] = std::min(src[j], thresh);
- }
- break;
- case THRESH_TOZERO:
- for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
- for (j = 0; j < roi.width; j++) {
- float v = src[j];
- dst[j] = v > thresh ? v : 0;
- }
- }
- break;
- case THRESH_TOZERO_INV:
- for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) {
- for (j = 0; j < roi.width; j++) {
- float v = src[j];
- dst[j] = v <= thresh ? v : 0;
- }
- }
- break;
- default:
- FBC_Error("BadArg");
- }
- }
- } // namespace fbc
- #endif // FBC_CV_THRESHOLD_HPP_
测试代码test_threshold.cpp:
- #include "test_threshold.hpp"
- #include <assert.h>
- #include <threshold.hpp>
- #include <opencv2/opencv.hpp>
- int test_threshold_uchar()
- {
- cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
- if (!matSrc.data) {
- std::cout << "read image fail" << std::endl;
- return -1;
- }
- cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY);
- int width = matSrc.cols;
- int height = matSrc.rows;
- int types[8] = {0, 1, 2, 3, 4, 7, 8, 16};
- for (int i = 0; i < 8; i++) {
- if (types[i] == 7) continue;
- double thresh = 135.0;
- double maxval = 255.0;
- fbc::Mat_<uchar, 1> mat1(height, width, matSrc.data);
- fbc::Mat_<uchar, 1> mat2(height, width);
- fbc::threshold(mat1, mat2, thresh, maxval, types[i]);
- cv::Mat mat1_(height, width, CV_8UC1, matSrc.data);
- cv::Mat mat2_;
- cv::threshold(mat1_, mat2_, thresh, maxval, types[i]);
- assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step);
- for (int y = 0; y < mat2.rows; y++) {
- const fbc::uchar* p1 = mat2.ptr(y);
- const uchar* p2 = mat2_.ptr(y);
- for (int x = 0; x < mat2.step; x++) {
- assert(p1[x] == p2[x]);
- }
- }
- }
- return 0;
- }
- int test_threshold_float()
- {
- cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
- if (!matSrc.data) {
- std::cout << "read image fail" << std::endl;
- return -1;
- }
- cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY);
- matSrc.convertTo(matSrc, CV_32FC1);
- int width = matSrc.cols;
- int height = matSrc.rows;
- int types[6] = { 0, 1, 2, 3, 4, 7 };
- for (int i = 0; i < 6; i++) {
- if (types[i] == 7) continue;
- double thresh = 135.0;
- double maxval = 255.0;
- fbc::Mat_<float, 1> mat1(height, width, matSrc.data);
- fbc::Mat_<float, 1> mat2(height, width);
- fbc::threshold(mat1, mat2, thresh, maxval, types[i]);
- cv::Mat mat1_(height, width, CV_32FC1, matSrc.data);
- cv::Mat mat2_;
- cv::threshold(mat1_, mat2_, thresh, maxval, types[i]);
- assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step);
- for (int y = 0; y < mat2.rows; y++) {
- const fbc::uchar* p1 = mat2.ptr(y);
- const uchar* p2 = mat2_.ptr(y);
- for (int x = 0; x < mat2.step; x++) {
- assert(p1[x] == p2[x]);
- }
- }
- }
- return 0;
- }
GitHub:https://github.com/fengbingchun/OpenCV_Test
OpenCV代码提取: threshold函数的实现的更多相关文章
- OpenCV代码提取:transpose函数的实现
OpenCV中的transpose函数实现图像转置,公式为: 目前fbc_cv库中也实现了transpose函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一 ...
- OpenCV代码提取:flip函数的实现
OpenCV中实现图像翻转的函数flip,公式为: 目前fbc_cv库中也实现了flip函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致. 实现代码fli ...
- OpenCV代码提取:dft函数的实现
The Fourier Transform will decompose an image into its sinus and cosines components. In other words, ...
- OpenCV代码提取:遍历指定目录下指定文件的实现
前言 OpenCV 3.1之前的版本,在contrib目录下有提供遍历文件的函数,用起来比较方便.但是在最新的OpenCV 3.1版本给去除掉了.为了以后使用方便,这里将OpenCV 2.4.9中相关 ...
- OpenCV中threshold函数的使用
转自:https://blog.csdn.net/u012566751/article/details/77046445 一篇很好的介绍threshold文章: 图像的二值化就是将图像上的像素点的灰度 ...
- OpenCV 学习笔记03 threshold函数
opencv-python 4.0.1 简介:该函数是对数组中的每一个元素(each array element)应用固定级别阈值(Applies a fixed-level threshold) ...
- opencv二值化的cv2.threshold函数
(一)简单阈值 简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了.函数为cv2.threshold() 这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个 ...
- OpenCV中的绘图函数-OpenCV步步精深
OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做i ...
- 基础学习笔记之opencv(24):imwrite函数的使用
http://www.cnblogs.com/tornadomeet/archive/2012/12/26/2834336.html 前言 OpenCV中保存图片的函数在c++版本中变成了imwrit ...
随机推荐
- 关于Java中截取字符串
获取系统时间:to_char(sysdate,'yyyy-mm-dd')截取CREATETIME常量的前10位字符串:CREATETIME.substring(0,10)截取DESCRIPT常量的前2 ...
- Jmeter入门13 jmeter发送application/octet-stream二进制流数据
http接口请求header里面 content-type: application/octet-stream (二进制流数据),如何用jmeter发送请求? 1 添加http请求头 2 http请 ...
- OC block声明和使用
#import "Button.h" typedef int (^MySum) (int, int); void test() { // 定义了一个block,这个block返回值 ...
- Android(java)学习笔记16:多线程 - 定时器概述和使用
1. 定时器: 定时器是一个应用十分广泛的线程工具,可用于调度多个定时任务以后台线程的方式执行. 在Java中,可以通过Timer和TimerTask类来实现定义调度的功能 Timer public ...
- UNIX PIPES 管道原稿
40年前,Unix操作系统横空出世,Unix不仅仅带来了一个操作系统,还创造C语言,Socket,开源,黑客等等文化,这些文化影响着整个计算机世界的文明,直到今天. 如果说Unix是计算机文明中最伟大 ...
- POJ 3635 Full Tank? 【分层图/最短路dp】
任意门:http://poj.org/problem?id=3635 Full Tank? Time Limit: 1000MS Memory Limit: 65536K Total Submis ...
- Pod常使用命令
pod 命令汇总 # 创建默认的 Podfile $ pod init # 第一次使用安装框架 $ pod install # 安装框架,不更新本地索引,速度快 $ pod install --no- ...
- VI编辑器查找替换
1.Vi下进行查找 VI命令模式下:输入“/要查找的词”回车就会进入查找,你可以按“n”查找下一个,按“N”查找上一个.类似查找命令“?”与“/”的区别是“/”为向下查找,“?”为向上查找. 2.Vi ...
- Blog 使用Jsoup解析出html中的img元素
Jsoup主页:http://jsoup.org/ 在Blog.java 加入 private List<String> imageList=new LinkedList<Strin ...
- mysql中set和enum使用(简单介绍)
简单介绍 SET类型 在创建表时,就指定SET类型的取值范围. 属性名 SET('值1','值2','值3'...,'值n') 其中,“属性名”参数指字段的名称:“值n”参数表示列表中的第n个值,这些 ...