OpenCV代码提取: threshold函数的实现
threshold algorithm: The simplest image segmentation method.
All thresholding algorithms take a source image (src) and a threshold value (thresh) as input and produce an output image (dst) by comparing the pixel value at source pixel( x , y ) to the threshold. If src ( x , y ) > thresh , then dst ( x , y ) is assigned a some value. Otherwise dst ( x , y ) is assigned some other value.
Otsu binarization: in simple words, it automatically calculates a threshold value from image histogram for a bimodal image. (For images which are not bimodal,binarization won’t be accurate.). working with bimodal images, Otsu’s algorithmtries to find a threshold value (t) which minimizes the weighted within-class variance. It actually finds a value of t which lies in between two peaks such that variances to both classes are minimum.
Otsu's thresholding method involves iterating through all the possible threshold values and calculating a measure of spread for the pixel levels each side of the threshold, i.e. the pixels that either fall in foreground or background.The aim is to find the threshold value where the sum of foreground and background spreads is at its minimum.
Triangle algorithm: A line is constructed between the maximum of the histogram at brightness bmax and the lowest value bmin in the image. The distance d between the line and the histogram h[b] is computed for all values of b from b = bmin to b = bmax. The brightness value bo where the distance between h[bo] and the line is maximal is the threshold value, that is, threshold = bo. This technique is particularly effective when the object pixels produce a weak peak in the histogram.
图像二值化就是将图像上的像素点的灰度值设置为两个值,一般为0,255或者指定的某个值。
Otsu:
目前fbc_cv库中支持uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致。
实现代码threshold.hpp:
// fbc_cv is free software and uses the same licence as OpenCV // Email: fengbingchun@163.com #ifndef FBC_CV_THRESHOLD_HPP_ #define FBC_CV_THRESHOLD_HPP_ /* reference: include/opencv2/imgproc.hpp modules/imgproc/src/thresh.cpp */ #include <typeinfo> #include "core/mat.hpp" #include "imgproc.hpp" namespace fbc { template<typename _Tp, int chs> static double getThreshVal_Otsu_8u(const Mat_<_Tp, chs>& src); template<typename _Tp, int chs> static double getThreshVal_Triangle_8u(const Mat_<_Tp, chs>& src); template<typename _Tp, int chs> static void thresh_8u(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, uchar thresh, uchar maxval, int type); template<typename _Tp, int chs> static void thresh_32f(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, float thresh, float maxval, int type); // applies fixed-level thresholding to a single-channel array // the Otsu's and Triangle methods are implemented only for 8-bit images // support type: uchar/float, single-channel template<typename _Tp, int chs> double threshold(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst, double thresh, double maxval, int type) { FBC_Assert(typeid(uchar).name() == typeid(_Tp).name() || typeid(float).name() == typeid(_Tp).name()); // uchar || float if (dst.empty()) { dst = Mat_<_Tp, chs>(src.rows, src.cols); } else { FBC_Assert(src.rows == dst.rows && src.cols == dst.cols); } int automatic_thresh = (type & ~THRESH_MASK); type &= THRESH_MASK; FBC_Assert(automatic_thresh != (THRESH_OTSU | THRESH_TRIANGLE)); if (automatic_thresh == THRESH_OTSU) { FBC_Assert(sizeof(_Tp) == 1); thresh = getThreshVal_Otsu_8u(src); } else if (automatic_thresh == THRESH_TRIANGLE) { FBC_Assert(sizeof(_Tp) == 1); thresh = getThreshVal_Triangle_8u(src); } if (sizeof(_Tp) == 1) { int ithresh = fbcFloor(thresh); thresh = ithresh; int imaxval = fbcRound(maxval); if (type == THRESH_TRUNC) imaxval = ithresh; imaxval = saturate_cast<uchar>(imaxval); if (ithresh < 0 || ithresh >= 255) { if (type == THRESH_BINARY || type == THRESH_BINARY_INV || ((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < 0) || (type == THRESH_TOZERO && ithresh >= 255)) { int v = type == THRESH_BINARY ? (ithresh >= 255 ? 0 : imaxval) : type == THRESH_BINARY_INV ? (ithresh >= 255 ? imaxval : 0) : /*type == THRESH_TRUNC ? imaxval :*/ 0; dst.setTo(v); } else src.copyTo(dst); return thresh; } thresh = ithresh; maxval = imaxval; } else if (sizeof(_Tp) == 4) { } else { FBC_Error("UnsupportedFormat"); } if (sizeof(_Tp) == 1) { thresh_8u(src, dst, (uchar)thresh, (uchar)maxval, type); } else { thresh_32f(src, dst, (float)thresh, (float)maxval, type); } return 0; } template<typename _Tp, int chs> static double getThreshVal_Otsu_8u(const Mat_<_Tp, chs>& _src) { Size size = _src.size(); const int N = 256; int i, j, h[N] = { 0 }; for (i = 0; i < size.height; i++) { const uchar* src = _src.ptr(i); j = 0; for (; j <= size.width - 4; j += 4) { int v0 = src[j], v1 = src[j + 1]; h[v0]++; h[v1]++; v0 = src[j + 2]; v1 = src[j + 3]; h[v0]++; h[v1]++; } for (; j < size.width; j++) h[src[j]]++; } double mu = 0, scale = 1. / (size.width*size.height); for (i = 0; i < N; i++) mu += i*(double)h[i]; mu *= scale; double mu1 = 0, q1 = 0; double max_sigma = 0, max_val = 0; for (i = 0; i < N; i++) { double p_i, q2, mu2, sigma; p_i = h[i] * scale; mu1 *= q1; q1 += p_i; q2 = 1. - q1; if (std::min(q1, q2) < FLT_EPSILON || std::max(q1, q2) > 1. - FLT_EPSILON) continue; mu1 = (mu1 + i*p_i) / q1; mu2 = (mu - q1*mu1) / q2; sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2); if (sigma > max_sigma) { max_sigma = sigma; max_val = i; } } return max_val; } template<typename _Tp, int chs> static double getThreshVal_Triangle_8u(const Mat_<_Tp, chs>& _src) { Size size = _src.size(); const int N = 256; int i, j, h[N] = { 0 }; for (i = 0; i < size.height; i++) { const uchar* src = _src.ptr(i); j = 0; for (; j <= size.width - 4; j += 4) { int v0 = src[j], v1 = src[j + 1]; h[v0]++; h[v1]++; v0 = src[j + 2]; v1 = src[j + 3]; h[v0]++; h[v1]++; } for (; j < size.width; j++) h[src[j]]++; } int left_bound = 0, right_bound = 0, max_ind = 0, max = 0; int temp; bool isflipped = false; for (i = 0; i < N; i++) { if (h[i] > 0) { left_bound = i; break; } } if (left_bound > 0) left_bound--; for (i = N - 1; i > 0; i--) { if (h[i] > 0) { right_bound = i; break; } } if (right_bound < N - 1) right_bound++; for (i = 0; i < N; i++) { if (h[i] > max) { max = h[i]; max_ind = i; } } if (max_ind - left_bound < right_bound - max_ind) { isflipped = true; i = 0, j = N - 1; while (i < j) { temp = h[i]; h[i] = h[j]; h[j] = temp; i++; j--; } left_bound = N - 1 - right_bound; max_ind = N - 1 - max_ind; } double thresh = left_bound; double a, b, dist = 0, tempdist; // We do not need to compute precise distance here. Distance is maximized, so some constants can // be omitted. This speeds up a computation a bit. a = max; b = left_bound - max_ind; for (i = left_bound + 1; i <= max_ind; i++) { tempdist = a*i + b*h[i]; if (tempdist > dist) { dist = tempdist; thresh = i; } } thresh--; if (isflipped) thresh = N - 1 - thresh; return thresh; } template<typename _Tp, int chs> static void thresh_8u(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, uchar thresh, uchar maxval, int type) { int i, j, j_scalar = 0; uchar tab[256]; Size roi = _src.size(); roi.width *= _src.channels; switch (type) { case THRESH_BINARY: for (i = 0; i <= thresh; i++) tab[i] = 0; for (; i < 256; i++) tab[i] = maxval; break; case THRESH_BINARY_INV: for (i = 0; i <= thresh; i++) tab[i] = maxval; for (; i < 256; i++) tab[i] = 0; break; case THRESH_TRUNC: for (i = 0; i <= thresh; i++) tab[i] = (uchar)i; for (; i < 256; i++) tab[i] = thresh; break; case THRESH_TOZERO: for (i = 0; i <= thresh; i++) tab[i] = 0; for (; i < 256; i++) tab[i] = (uchar)i; break; case THRESH_TOZERO_INV: for (i = 0; i <= thresh; i++) tab[i] = (uchar)i; for (; i < 256; i++) tab[i] = 0; break; default: FBC_Error("Unknown threshold type"); } if (j_scalar < roi.width) { for (i = 0; i < roi.height; i++) { const uchar* src = _src.ptr(i); uchar* dst = _dst.ptr(i); j = j_scalar; for (; j <= roi.width - 4; j += 4) { uchar t0 = tab[src[j]]; uchar t1 = tab[src[j + 1]]; dst[j] = t0; dst[j + 1] = t1; t0 = tab[src[j + 2]]; t1 = tab[src[j + 3]]; dst[j + 2] = t0; dst[j + 3] = t1; } for (; j < roi.width; j++) dst[j] = tab[src[j]]; } } } template<typename _Tp, int chs> static void thresh_32f(const Mat_<_Tp, chs>& _src, Mat_<_Tp, chs>& _dst, float thresh, float maxval, int type) { int i, j; Size roi = _src.size(); roi.width *= _src.channels; const float* src = (const float*)_src.ptr(); float* dst = (float*)_dst.ptr(); size_t src_step = _src.step / sizeof(src[0]); size_t dst_step = _dst.step / sizeof(dst[0]); switch (type) { case THRESH_BINARY: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) dst[j] = src[j] > thresh ? maxval : 0; } break; case THRESH_BINARY_INV: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) dst[j] = src[j] <= thresh ? maxval : 0; } break; case THRESH_TRUNC: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) dst[j] = std::min(src[j], thresh); } break; case THRESH_TOZERO: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) { float v = src[j]; dst[j] = v > thresh ? v : 0; } } break; case THRESH_TOZERO_INV: for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) { for (j = 0; j < roi.width; j++) { float v = src[j]; dst[j] = v <= thresh ? v : 0; } } break; default: FBC_Error("BadArg"); } } } // namespace fbc #endif // FBC_CV_THRESHOLD_HPP_
测试代码test_threshold.cpp:
#include "test_threshold.hpp" #include <assert.h> #include <threshold.hpp> #include <opencv2/opencv.hpp> int test_threshold_uchar() { cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1); if (!matSrc.data) { std::cout << "read image fail" << std::endl; return -1; } cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY); int width = matSrc.cols; int height = matSrc.rows; int types[8] = {0, 1, 2, 3, 4, 7, 8, 16}; for (int i = 0; i < 8; i++) { if (types[i] == 7) continue; double thresh = 135.0; double maxval = 255.0; fbc::Mat_<uchar, 1> mat1(height, width, matSrc.data); fbc::Mat_<uchar, 1> mat2(height, width); fbc::threshold(mat1, mat2, thresh, maxval, types[i]); cv::Mat mat1_(height, width, CV_8UC1, matSrc.data); cv::Mat mat2_; cv::threshold(mat1_, mat2_, thresh, maxval, types[i]); assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step); for (int y = 0; y < mat2.rows; y++) { const fbc::uchar* p1 = mat2.ptr(y); const uchar* p2 = mat2_.ptr(y); for (int x = 0; x < mat2.step; x++) { assert(p1[x] == p2[x]); } } } return 0; } int test_threshold_float() { cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1); if (!matSrc.data) { std::cout << "read image fail" << std::endl; return -1; } cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY); matSrc.convertTo(matSrc, CV_32FC1); int width = matSrc.cols; int height = matSrc.rows; int types[6] = { 0, 1, 2, 3, 4, 7 }; for (int i = 0; i < 6; i++) { if (types[i] == 7) continue; double thresh = 135.0; double maxval = 255.0; fbc::Mat_<float, 1> mat1(height, width, matSrc.data); fbc::Mat_<float, 1> mat2(height, width); fbc::threshold(mat1, mat2, thresh, maxval, types[i]); cv::Mat mat1_(height, width, CV_32FC1, matSrc.data); cv::Mat mat2_; cv::threshold(mat1_, mat2_, thresh, maxval, types[i]); assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step); for (int y = 0; y < mat2.rows; y++) { const fbc::uchar* p1 = mat2.ptr(y); const uchar* p2 = mat2_.ptr(y); for (int x = 0; x < mat2.step; x++) { assert(p1[x] == p2[x]); } } } return 0; }
GitHub:https://github.com/fengbingchun/OpenCV_Test
OpenCV代码提取: threshold函数的实现的更多相关文章
- OpenCV代码提取:transpose函数的实现
OpenCV中的transpose函数实现图像转置,公式为: 目前fbc_cv库中也实现了transpose函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一 ...
- OpenCV代码提取:flip函数的实现
OpenCV中实现图像翻转的函数flip,公式为: 目前fbc_cv库中也实现了flip函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致. 实现代码fli ...
- OpenCV代码提取:dft函数的实现
The Fourier Transform will decompose an image into its sinus and cosines components. In other words, ...
- OpenCV代码提取:遍历指定目录下指定文件的实现
前言 OpenCV 3.1之前的版本,在contrib目录下有提供遍历文件的函数,用起来比较方便.但是在最新的OpenCV 3.1版本给去除掉了.为了以后使用方便,这里将OpenCV 2.4.9中相关 ...
- OpenCV中threshold函数的使用
转自:https://blog.csdn.net/u012566751/article/details/77046445 一篇很好的介绍threshold文章: 图像的二值化就是将图像上的像素点的灰度 ...
- OpenCV 学习笔记03 threshold函数
opencv-python 4.0.1 简介:该函数是对数组中的每一个元素(each array element)应用固定级别阈值(Applies a fixed-level threshold) ...
- opencv二值化的cv2.threshold函数
(一)简单阈值 简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了.函数为cv2.threshold() 这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个 ...
- OpenCV中的绘图函数-OpenCV步步精深
OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做i ...
- 基础学习笔记之opencv(24):imwrite函数的使用
http://www.cnblogs.com/tornadomeet/archive/2012/12/26/2834336.html 前言 OpenCV中保存图片的函数在c++版本中变成了imwrit ...
随机推荐
- NODE-windows 下安装nodejs及其配置环境
相信对于很多关注javascript发展的同学来说,nodejs已经不是一个陌生的词眼.有关nodejs的相关资料网上已经铺天盖地.由于它的高并发特性,造就了其特殊的应用地位. 国内目前关注最高,维护 ...
- python+pymssql+selenium 获取短信验证码登录(实战练习)
登录页面输入手机号, 获取短信验证码(验证码有10分钟有效期) 1 连接sql server数据库,获取10分钟之内的有效短信验证码 2 页面输入手机号,并获取验证码.若存在有效验证码则输入验证码,若 ...
- MySQL:数据库入门篇2
#移除主键时需要先解除递增,才能解除主键 alter table info modify id int null , drop PRIMARY key 一.用户权限 1.创建用户 create use ...
- HDU 5536 Chip Factory 【01字典树删除】
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5536 Chip Factory Time Limit: 18000/9000 MS (Java/Ot ...
- VMWARE下CentOS7虚拟机网络配置
注:本文仅针对新装的虚拟机,#ip addr 获取不到ip信息,无法连接网络的情况提供一种参考解决方案. 1.左上角点击“编辑”->“虚拟网络编辑器”.新建一个NAT模式的网络. 2.配置虚拟机 ...
- 【转】iOS保持界面流畅的技巧
原文链接:iOS保持界面流畅的技巧 这篇文章会非常详细的分析 iOS 界面构建中的各种性能问题以及对应的解决思路,同时给出一个开源的微博列表实现,通过实际的代码展示如何构建流畅的交互. Index演示 ...
- 【luogu P3378 堆】 模板
题目链接:https://www.luogu.org/problemnew/show/P3378 是堆的模板...我懒,STL da fa is good #include <iostream& ...
- linux 学习(三) php相关
五 php相关 配置文件位置 /etc/apache2/apache2.conf 1禁止列举目录 sudo vi /etc/apache2/sites-enabled/000-default 删除Op ...
- svn cleanup failed–previous operation has not finished; run cleanup if it was interrupted
svn提交遇到恶心的问题,可能是因为上次cleanup中断后,进入死循环了. 错误如下: 解决方法:清空svn的队列 1.下载sqlite3.exe 2.找到你项目的.svn文件,查看是否存在wc.d ...
- PC Android IOS资料同步更新
在程序发布后,特别是IOS版本,想替换里边的内容,重新发布版本很是麻烦.我们就可以动态用AssetBundle更新内容. 如果是自定义二进制文件,先要改为“.Bytes”后缀的文件,Unity会把这个 ...