这两道题是一样的......

我就说一下较难的那个 OSU!:

这道15行的水题我竟然做了两节课......

若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i][1]=p*(f[i-1][0]+1.0)+p*(f[i-1][1]+OOXX);

我们合并一下f[i]=p*1.0+p*OOXX=p*OX;

OX:就是期望x^3的差,也就是(x+1)^3=x^3+3*x^2+3*x+1.0,中的3*x^2+3*x+1.0,这样我们要维护x^2以及x注意这里的x^2和x是指结尾的长度x

#include<cstdio>
double f,p,X2,X1;
int n;
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%lf",&p);
f+=p*(3.0*X2+3.0*X1+1.0);
X2=p*(X2+2.0*X1+1.0);
X1=p*(X1+1.0);
}
printf("%.1lf",f);
}

下面给一下Easy的代码

#include<cstdio>
#include<cstring>
using namespace std;
char s[];
double ans,X,now;
int len;
int main()
{
scanf("%d%s",&len,s);
for(int i=;i<len;i++)
{
if(s[i]=='?')now=0.5;
else if(s[i]=='o')now=1.0;
else now=0.0;
ans+=now*(2.0*X+1.0);
X=now*(X+1.0);
}
printf("%.4lf",ans);
return ;
}

BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  3. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  5. [bzoj3450]Tyvj1952 Easy[概率dp]

    和之前一样考虑这个音符时x还是o,如果是x,是否是新的连续一段,对答案的贡献是多少$(a^2-{(a-1)}^2)$,然后递推就可以了. #include <bits/stdc++.h> ...

  6. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  7. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  8. bzoj 4318 OSU 概率期望dp

    可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...

  9. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

随机推荐

  1. thinkphp5数据库导入Excel表格

    $data=$order_info; //$data 你要下载谁 就去查谁 // $data= Db::name('order_info') // ->field('consignee,tel, ...

  2. SQL语句笔记/好记性不如烂笔头/持续更新

    常用的增删改查操作,针对库,表,字段,记录分类有助于记忆,当然熟能生巧,还是需要多多实操 库操作 删除库 drop database dbx; 列出所有库 show databases; 切换库 us ...

  3. DJANGO2.0 关联表的必填 ON_DELETE

    DJANGO2.0 关联表的必填 ON_DELETE 参数的含义 - BUXIANGHEJIU 的博客 - CSDN 博客 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blo ...

  4. C语言的结构体,枚举类型在程序中的作用

    http://www.xue63.com/xueask-1221-12212854.html 结构和枚举类型从程序实现的角度来说,是用更接近自然语言的方式来表达数据.比如说实现2维空间的点,你可以使用 ...

  5. R语言学习笔记(九):fivenum()与quantile()

    fivenum() fivenum(x, na.rm = TRUE) x 为数值型向量,可以包含NA以及Inf,-Inf na.rm = TRUE 默认将NA和NaN去除,但是Inf还保留. five ...

  6. IDEA Java Web(Spring)项目从创建到打包(war)

    创建Maven管理的Java Web应用 创建新项目,"create new project",左侧类型选择"maven",右侧上方选择自己的SDK,点击&qu ...

  7. Hibernate-ORM:13.Hibernate中的连接查询

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客将会解释Hibernate中的连接查询(各种join) 一,目录 1.内链接 1.1显式内连接(inn ...

  8. js面向对象过程

    var a = new  b(); 等价于 var a={}; a=b.prototype; b.call(a);

  9. Linux环境搭建系列之sorl服务器的安装部署

    http://blog.csdn.net/upxiaofeng/article/details/51425732

  10. 【题解搬运】PAT_L1-009 N个数求和

    从我原来的博客上搬运.原先blog作废. (伪)水题+1,旨在继续摸清这个blog(囧 题目 就是求N个数字的和.麻烦的是,这些数字是以有理数"分子/分母"的形式给出的,你输出的和 ...