洛谷P1522 牛的旅行 Cow Tours
---恢复内容开始---
P1522 牛的旅行 Cow Tours
189
通过
502
提交
题目提供者该用户不存在
标签 图论 USACO
难度 提高+/省选-
提交该题 讨论 题解 记录
最新讨论
输出格式
题目描述
农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通。这样,Farmer John就有多个牧场了。
John想在牧场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:
一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:
(15,15) (20,15)
D E
*-------*
| _/|
| _/ |
| _/ |
|/ |
*--------*-------*
A B C
(10,10) (15,10) (20,10)
【请将以上图符复制到记事本中以求更好的观看效果,下同】
这个牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。
这里是另一个牧场:
*F(30,15)
/
_/
_/
/
*------*
G H
(25,10) (30,10)
在目前的情景中,他刚好有两个牧场。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。
注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。
输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵
:
A B C D E F G H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 1 0 0 0
C 0 1 0 0 1 0 0 0
D 0 1 0 0 1 0 0 0
E 0 1 1 1 0 0 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 1 0
其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。
输入文件至少包括两个不连通的牧区。
请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出在所有牧场中最小的可能的直径。
输入输出格式
输入格式:
第1行: 一个整数N (1 <= N <= 150), 表示牧区数
第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的。
第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。
输出格式:
只有一行,包括一个实数,表示所求直径。数字保留六位小数。
只需要打到小数点后六位即可,不要做任何特别的四舍五入处理。
输入输出样例
输入样例#1:
8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010
输出样例#1:
22.071068
说明
翻译来自NOCOW
USACO 2.4
---恢复内容结束---
P1522 牛的旅行 Cow Tours
189
通过
502
提交
题目提供者该用户不存在
标签 图论 USACO
难度 提高+/省选-
提交该题 讨论 题解 记录
最新讨论
输出格式
题目描述
农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通。这样,Farmer John就有多个牧场了。
John想在牧场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:
一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:
(15,15) (20,15)
D E
*-------*
| _/|
| _/ |
| _/ |
|/ |
*--------*-------*
A B C
(10,10) (15,10) (20,10)
【请将以上图符复制到记事本中以求更好的观看效果,下同】
这个牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。
这里是另一个牧场:
*F(30,15)
/
_/
_/
/
*------*
G H
(25,10) (30,10)
在目前的情景中,他刚好有两个牧场。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。
注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。
输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵
:
A B C D E F G H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 1 0 0 0
C 0 1 0 0 1 0 0 0
D 0 1 0 0 1 0 0 0
E 0 1 1 1 0 0 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 1 0
其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。
输入文件至少包括两个不连通的牧区。
请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出在所有牧场中最小的可能的直径。
输入输出格式
输入格式:
第1行: 一个整数N (1 <= N <= 150), 表示牧区数
第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的。
第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。
输出格式:
只有一行,包括一个实数,表示所求直径。数字保留六位小数。
只需要打到小数点后六位即可,不要做任何特别的四舍五入处理。
输入输出样例
输入样例#1:
8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010
输出样例#1:
22.071068
说明
翻译来自NOCOW
USACO 2.4
分析:读这道题感觉很考验我的语文能力一会最大一会最小,而且题目好像写错了?首先要把每两个点之间的最短路求出来,本题的规模很小,就用floyd算法,然后计算离每个点最远的那个点的距离,记作zuiyuan[i],那么我们要求一条路径,这条路径通过枚举就可以得到,如果两个点之间的路程为inf,并且是两个不同的点i,j,那么则连起来那么合起来的牧场的直径就是dist(i,j)+zuiyuan[i] + zuiyuan[j]为什么呢......很简单,第一个牧场的是离i最远距离,第二个牧场类同,中间只有一条路径相连,当然就是直径了,那么因为要求最小的直径,所以不断取最小值.注意题目让我们求3个牧场(合起来有一个)中的最“小”值,我感觉并不是求最小值,应该是求最大值,那么在计算zuiyuan[i]的时候记录一下就可以了.
#include <cstdio>
#include <cmath>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ,inf = 1e18; int n;
double x[maxn], y[maxn],d[maxn][maxn],zuiyuan[maxn],ans1,ans2;
char s[maxn]; double jisuan(double x, double y, double x1, double y1)
{
return sqrt((x - x1) * (x - x1) + (y - y1) * (y - y1));
} int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%lf%lf", &x[i], &y[i]);
for (int i = ; i <= n; i++)
{
scanf("%s", s + );
for (int j = ; j <= n; j++)
{
if (s[j] == '')
d[i][j] = jisuan(x[i], y[i], x[j], y[j]);
else
d[i][j] = inf;
}
}
for (int k = ; k <= n; k++)
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
if (i != j && j != k && i != k) //不要写成i != j != k
if (d[i][k] != inf && d[k][j] != inf)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
for (int i = ; i <= n; i++)
{
zuiyuan[i] = ;
for (int j = ; j <= n; j++)
if (d[i][j] != inf)
zuiyuan[i] = max(zuiyuan[i], d[i][j]);
ans2 = max(ans2, zuiyuan[i]);
}
ans1 = inf;
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
if (i != j && d[i][j] == inf)
ans1 = min(ans1, zuiyuan[i] + zuiyuan[j] + jisuan(x[i],y[i],x[j],y[j]));
printf("%.6lf\n", max(ans1, ans2)); return ;
}
洛谷P1522 牛的旅行 Cow Tours的更多相关文章
- 洛谷 P1522 牛的旅行 Cow Tours 题解
P1522 牛的旅行 Cow Tours 题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不 ...
- 洛谷 P1522 牛的旅行 Cow Tours
题目链接:https://www.luogu.org/problem/P1522 思路:编号,然后跑floyd,这是很清楚的.然后记录每个点在这个联通块中的最远距离. 然后分连通块,枚举两个点(不属于 ...
- 洛谷 - P1522 - 牛的旅行 - Cow Tours - Floyd
https://www.luogu.org/problem/P1522 好坑啊,居然还有直径不通过新边的数据,还好不是很多. 注意一定要等Floyd跑完之后再去找连通块的直径,不然一定是INF. #i ...
- 洛谷 P1522 牛的旅行 Cow Tours——暴力枚举+最短路
先上一波题目 https://www.luogu.org/problem/P1522 这道题其实就是给你几个相互独立的连通图 问找一条新的路把其中的两个连通图连接起来后使得新的图中距离最远的两个点之 ...
- 洛谷P1522牛的旅行——floyd
题目:https://www.luogu.org/problemnew/show/P1522 懒于仔细分情况而直接像题解那样写floyd然后不明白最后一步max的含义了... 分开考虑怎么保证在一个内 ...
- Luogu P1522 牛的旅行 Cow Tours
题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...
- P1522 牛的旅行 Cow Tours floyed
题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...
- P1522 牛的旅行 Cow Tours
题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...
- 洛谷P1522 牛的旅行
题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...
随机推荐
- Tensorflow之安装GPU版错误集合
在根据教程http://blog.csdn.net/sb19931201/article/details/53648615安装好全部的时候,却无情的给我抛了几个错: 1.AttributeEr ...
- CSS3新特性回顾
CSS3 介绍 开始实例 新特征简介 强大的CSS选择器 抛弃图片的视觉效果 盒模型变化(多列布局和弹性盒模型) 阴影效果 Web字体和web Font 图标 CSS33过渡与动画交互效果 媒体查询 ...
- OpenCV代码提取:transpose函数的实现
OpenCV中的transpose函数实现图像转置,公式为: 目前fbc_cv库中也实现了transpose函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一 ...
- Unity 3d C#和Javascript脚本互相调用 解决方案(非原创、整理资料,并经过实践得来)
Unity 3d C#和Javascript脚本互相调用 解决方案 1.背景知识 脚本的编译过程分四步: 1. 编译所有 ”Standard Assets”, “Pro Standard Assets ...
- 【js笔记】数组那些事[0]
js中数组是一个特殊的对象,索引是它的属性,整数索引在内部被转化为字符串类型. 1 数组的创建 new关键字方法:var arr=new Array() var arr=new Array(10); ...
- oracle12c 新建表空间
第1步:创建临时表空间 create temporary tablespace jeeplus_temp tempfile 'D:\app\Administrator\virtual\product\ ...
- Python request 简单使用
Requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库.它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTT ...
- Ruby中数组的&操作
最近在忙一个项目,好久没有写日志了,项目终于接近尾声,可以适当放松一下,所以记一下在这个项目中发现的有趣事情: 数组的 与 操作 一直以为两个数组A和B相与,谁前谁后都一样,不过这次在项目中突然想试一 ...
- 洛谷P1379八数码难题
题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中. 要求解的问题是:给出一种初始布局(初始状态)和目标布局(为 ...
- 更换ubuntu软件源的方法
第一步:查看本系统Codename 输入lsb_release -a查看本系统Codename,我的codename是bionic,如图: 第二步:搜索与codename对应的镜像地址 我搜索到的是: ...