Naive Operations

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Others)
Total Submission(s): 2691    Accepted Submission(s): 1183

Problem Description
In a galaxy far, far away, there are two integer sequence a and b of length n.
b is a static permutation of 1 to n. Initially a is filled with zeroes.
There are two kind of operations:
1. add l r: add one for al,al+1...ar
2. query l r: query ∑ri=l⌊ai/bi⌋
 
Input
There are multiple test cases, please read till the end of input file.
For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.
In the second line, n integers separated by spaces, representing permutation b.
In the following q lines, each line is either in the form 'add l r' or 'query l r', representing an operation.
1≤n,q≤100000, 1≤l≤r≤n, there're no more than 5 test cases.
 
Output
Output the answer for each 'query', each one line.
 
Sample Input
5 12
1 5 2 4 3
add 1 4
query 1 4
add 2 5
query 2 5
add 3 5
query 1 5
add 2 4
query 1 4
add 2 5
query 2 5
add 2 2
query 1 5
 
Sample Output
1
1
2
4
4
6
 

题意:初始时有一段长度为n的数组a为0,长度为n的数组b,给你数组b

  有操作add,把区间[l,r]内每一个ai+1,query,查询操作。 区间 a[i]/b[i]向下取整的和。

题解:

我们每次区间加一,变成把每个值减一,每次减到0的时候ai/bi的值就会+1,用cnt记录,再把值重新更新为bi,查询的时候查询+1 的总和。

用线段树保留最小值,当出现最小值为0的时候把cnt++,值更新为b[r],因为每次只会加+1所以总数不会太大

zzq的做法

考虑维护 的这样的最小的 ,每次 加一的时候 就减
一,一旦 变成 了那么就需要把 加一,这样两个线段树维护一下就行了。
注意到 由于 是排列是 的,那么复杂度就是 。

代码如下:

#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <stack>
#include <queue>
#include <cstdio>
#include <cctype>
#include <bitset>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
#define fuck(x) cout<<"["<<x<<"]";
#define FIN freopen("input.txt","r",stdin);
#define FOUT freopen("output.txt","w+",stdout);
//#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int maxn = 1e5+;
const int INF = 0x3f3f3f3f;
const long long mod = 1e9+;
const double eps = 1e-;
int b[*maxn];
int n,q;
int dat[*maxn];
int lazy[*maxn];
int res;
int cnt[maxn*];
void init(int l,int r,int k){
int chl=k<<|,chr=(k+)<<,mid=(l+r)/;
if(r-l==){
lazy[k]=cnt[k]=;
dat[k]=b[r];
return ;
}else{
lazy[k]=cnt[k]=;
init(l,mid,chl);
init(mid,r,chr);
dat[k]=min(dat[chl],dat[chr]);
}
}
int sum(int a,int c,int l,int r,int k){
int chl=k<<|,chr=(k+)<<,mid=(l+r)/;
if(c<=l||a>=r){
return ;
}else if(a<=l&&r<=c){
return cnt[k];
}else {
lazy[chl]+=lazy[k];
lazy[chr]+=lazy[k];
lazy[k]=;
dat[k]=min(dat[chl]+lazy[chl],dat[chr]+lazy[chr]);
return sum(a,c,l,mid,chl)+sum(a,c,mid,r,chr);
}
}
void updata(int a,int c,int l ,int r , int k){
int chl=k<<|,chr=(k+)<<,mid=(l+r)/;
if(c<=l||a>=r){
return;
}else if(a<=l&&r<=c){
if(lazy[k]+dat[k]-<=){
if(r-l==){
cnt[k]++;
dat[k]=b[r];
lazy[k]=;
return;
}
lazy[chl]+=lazy[k];
lazy[chr]+=lazy[k];
lazy[k]=;
updata(a,c,l,mid,chl);
updata(a,c,mid,r,chr);
if(r-l!=){
cnt[k]=cnt[chl]+cnt[chr];
dat[k]=min(dat[chl]+lazy[chl],dat[chr]+lazy[chr]);
}
return;
}
lazy[k]--;
}else{
lazy[chl]+=lazy[k];
lazy[chr]+=lazy[k];
updata(a,c,l,mid,chl);
updata(a,c,mid,r,chr);
lazy[k]=;
dat[k]=min(dat[chl]+lazy[chl],dat[chr]+lazy[chr]);
if(r-l!=) cnt[k]=cnt[chl]+cnt[chr];
}
}
char ch[];
int l,r;
int main(){
#ifndef ONLINE_JUDGE
FIN
#endif
while(scanf("%d%d",&n,&q) !=EOF){
for(int i=;i<=n;i++){
scanf("%d",&b[i]);
}
init(,n,);
while(q--){
scanf("%s %d %d",ch,&l,&r);
if(ch[]=='a'){
updata(l-,r,,n,);
}else{
printf("%d\n",sum(l-,r,,n,));
}
}
}
return ;
}
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<algorithm>
#define L long long
using namespace std;
const int q=;
int n,m,t,c[][],f[][],x[],a[],b[],p;
int main()
{
int i,j,k,l;
for(i=;i<=;i++)
{
c[i][]=;
for(j=;j<=i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%q;
}
x[]=;
for(i=;i<=;i++)
x[i]=(x[i-]<<)%q;
while(scanf("%d%d",&n,&m)!=EOF)
{
scanf("%d%d",&i,&j);
a[i]=;
for(k=i+;k<=n;k++)
{
a[k]=;
for(l=i;l<k;l++)
a[k]=(a[k]-(L)a[l]*c[k][l])%q;
}
b[j]=;
for(k=j+;k<=m;k++)
{
b[k]=;
for(l=j;l<k;l++)
b[k]=(b[k]-(L)b[l]*c[k][l])%q;
}
for(k=i;k<=n;k++)
for(l=j;l<=m;l++)
f[k][l]=(L)c[n][k]*c[m][l]%q*x[(n-k)*(m-l)]%q;
p=;
for(k=i;k<=n;k++)
for(l=j;l<=m;l++)
p=(p+(L)f[k][l]*a[k]%q*b[l])%q;
p=(p+q)%q;
printf("%d\n",p);
}
return ;
}

HDU 多校对抗 F Naive Operations的更多相关文章

  1. HDU 多校对抗第三场 L Visual Cube

    Problem L. Visual Cube Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java ...

  2. 杭电多校第二场 hdu 6315 Naive Operations 线段树变形

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  3. HDU 6351 Naive Operations(线段树)

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=6315 Naive Operations Time Limit: 6000/3000 MS (Java/O ...

  4. hdu Naive Operations 线段树

    题目大意 题目链接Naive Operations 题目大意: 区间加1(在a数组中) 区间求ai/bi的和 ai初值全部为0,bi给出,且为n的排列,多组数据(<=5),n,q<=1e5 ...

  5. hdu 6315 Naive Operations (2018 Multi-University Training Contest 2 1007)

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  6. HDU 6315: Naive Operations

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  7. HDU6315 Naive Operations(多校第二场1007)(线段树)

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  8. 2018 HDU多校第四场赛后补题

    2018 HDU多校第四场赛后补题 自己学校出的毒瘤场..吃枣药丸 hdu中的题号是6332 - 6343. K. Expression in Memories 题意: 判断一个简化版的算术表达式是否 ...

  9. 2018 HDU多校第三场赛后补题

    2018 HDU多校第三场赛后补题 从易到难来写吧,其中题意有些直接摘了Claris的,数据范围是就不标了. 如果需要可以去hdu题库里找.题号是6319 - 6331. L. Visual Cube ...

随机推荐

  1. (数据科学学习手札18)二次判别分析的原理简介&Python与R实现

    上一篇我们介绍了Fisher线性判别分析的原理及实现,而在判别分析中还有一个很重要的分支叫做二次判别,本文就对二次判别进行介绍: 二次判别属于距离判别法中的内容,以两总体距离判别法为例,对总体G1,, ...

  2. Rmarkdown:输出pdf设置

    输出pdf需要安装Ctex --- title: "first markdown" author: "name" date: "`r format(S ...

  3. cf776D Mahmoud and a Dictionary

    Mahmoud wants to write a new dictionary that contains n words and relations between them. There are ...

  4. ABAP CDS ON HANA-(8)算術式

    Arithmetic expression in CDS View Allowed Arithmetic operators in CDS view. CDS View- @AbapCatalog.s ...

  5. python2.7入门---循环语句(while)

        接下来就要了解循环语句了.我们都知道,程序在一般情况下是按顺序执行的.编程语言提供了各种控制结构,允许更复杂的执行路径.循环语句允许我们执行一个语句或语句组多次,下面是在大多数编程语言中的循环 ...

  6. 『JavaScript』模仿接口

    JavaScript中并没有内置的创建或实现接口的方法.这里将利用JavaScript的灵活性,来实现与接口意义相同的功能. 什么是接口? 接口的好处: 接口提供了一种用以说明一个对象应该具有哪些方法 ...

  7. 软件测试面试题-适合零基础和工作多年的re

    软件测试面试题整理,可以看看:适合零基础和多年工作经验跳槽的人 有些问题会深挖,就不在整理了 详看图片:

  8. fiddler抓包-简单易操作(二)

    Fiddler抓包简介 原理:fiddler是通过改写HTTP代理,客户端和服务器进行交互时,数据会从他那里通过,来监控和截取数据.我是这样理解的,如果不对,欢迎指正.如下图: 如果想要抓到数据包,首 ...

  9. 如何用Fiddler 拦住RestAssured发出的请求

    用RestAssured 发出的请求并不能直接被fiddler 拦截,可以在初始化的时候做出如下配置: RestAssured.proxy("localhost", 8888); ...

  10. java编程思想 内容总结

    Java编程思想重点笔记(Java开发必看) Java编程思想,Java学习必读经典,不管是初学者还是大牛都值得一读,这里总结书中的重点知识,这些知识不仅经常出现在各大知名公司的笔试面 试过程中,而且 ...