方便起见,本文仅以三层的神经网络举例。

  • f(⋅):表示激励函数
  • xi:表示输入层;
  • yj:表示中间的隐层;
    • yj=f(netj)
    • netj=∑i=0nvijxi
  • ok:表示输出层,dk 则表示期望输出;
    • ok=f(netk)
    • netk=∑j=0mwjkyj
  • vij,wjk 分别是连接输入层-隐层,隐层和输出层的权值矩阵;

BP 既然称为 error back propagation 算法,我们首先来看 error 的一种常见定义:

E=12(d⃗ −o⃗ )2=12∑k=1ℓ(dk−ok)2

三层神经网络下,将其展开至隐层:

E==12∑k=1ℓ(dk−ok)212∑k=1ℓ⎛⎝dk−f⎛⎝∑j=0mwjkyj⎞⎠⎞⎠2

进一步展开至输入层:

E===12∑k=1ℓ(dk−ok)212∑k=1ℓ⎛⎝dk−f⎛⎝∑j=0mwjkyj⎞⎠⎞⎠212∑k=1ℓ⎛⎝dk−f⎛⎝∑j=0mwjkf(∑i=0nvijxi)⎞⎠⎞⎠2

手推机器学习公式(一) —— BP 反向传播算法的更多相关文章

  1. 机器学习 —— 基础整理(七)前馈神经网络的BP反向传播算法步骤整理

    这里把按 [1] 推导的BP算法(Backpropagation)步骤整理一下.突然想整理这个的原因是知乎上看到了一个帅呆了的求矩阵微分的方法(也就是 [2]),不得不感叹作者的功力.[1] 中直接使 ...

  2. 【深度学习】BP反向传播算法Python简单实现

    转载:火烫火烫的 个人觉得BP反向传播是深度学习的一个基础,所以很有必要把反向传播算法好好学一下 得益于一步一步弄懂反向传播的例子这篇文章,给出一个例子来说明反向传播 不过是英文的,如果你感觉不好阅读 ...

  3. BP反向传播算法的工作原理How the backpropagation algorithm works

    In the last chapter we saw how neural networks can learn their weights and biases using the gradient ...

  4. 稀疏自动编码之反向传播算法(BP)

    假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值.第二项是一个归一化项( ...

  5. 100天搞定机器学习|day37 无公式理解反向传播算法之精髓

     100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦 ...

  6. 【机器学习】反向传播算法 BP

    知识回顾 1:首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络的层数,S表示每层输入的神经元的个数,SL代表最后一层中处理的单元 ...

  7. 神经网络与机器学习 笔记—反向传播算法(BP)

    先看下面信号流图,L=2和M0=M1=M2=M3=3的情况,上面是前向通过,下面部分是反向通过. 1.初始化.假设没有先验知识可用,可以以一个一致分布来随机的挑选突触权值和阈值,这个分布选择为均值等于 ...

  8. 神经网络训练中的Tricks之高效BP(反向传播算法)

    神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...

  9. 深度神经网络(DNN)反向传播算法(BP)

    在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...

随机推荐

  1. 使用stringstream进行类型转换与字符串分割

    C++标准库中的<sstream>提供了比ANSI C的<stdio.h>更高级的一些功能,即单纯性.类型安全和可扩展性. 如果你已习惯了<stdio.h>风格的转 ...

  2. HDU2438 Turn the corner【三分法】【数学几何】

    Turn the corner Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. Spring Boot Freemarker特别篇之contextPath【从零开始学Spring Boot】(转)

    需求缘起:有人在群里@我:请教群主大神一个问题,spring boot  + freemarker 怎么获取contextPath 头疼死我了,网上没一个靠谱的 .我就看看之前博客中的 [Spring ...

  4. struts2注入类

    struts2是能够注入一个对象的,那么一定须要继承ModelDriven的泛型接口. package com.test.action; import com.opensymphony.xwork2. ...

  5. Android应用性能优化系列视图篇——隐藏在资源图片中的内存杀手

    图片加载性能优化永远是Android领域中一个无法绕过的话题,经过数年的发展,涌现了很多成熟的图片加载开源库,比如Fresco.Picasso.UIL等等,使得图片加载不再是一个头疼的问题,并且大幅降 ...

  6. Socket编程模型之完毕port模型

    转载请注明来源:viewmode=contents">http://blog.csdn.net/caoshiying?viewmode=contents 一.回想重叠IO模型 用完毕例 ...

  7. js 99乘法表

    哈哈哈,笑死我了,突然怀念学习时代,撸了一个乘法表 for(let a=1;a<10;a++){let str = ''; for(let b=1;b<10;b++){ str = str ...

  8. thinkphp 3.2 updateFields 设置之后保存失败

    // 检测提交字段的合法性 if(isset($this->options['field'])) { // $this->field('field1,field2...')->cre ...

  9. https://www.cyberciti.biz/faq/howto-change-rename-user-name-id/

    https://www.cyberciti.biz/faq/howto-change-rename-user-name-id/

  10. php 上传文件大小控制配置文件中设置的

    Windows 环境下的修改方法 ================================================================第一步:修改在php5下POST文件大 ...