复制上一题总结

caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽

   (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符 

   (2)初始化问题。
         一般设f[i][j]为第一个字符前i个,第二个字符前j个的最优价值

         f[0][0] = 0

          然后要初始化f[i][0], f[0][i]


      这个时候要根据题意。

         这个时候就是一个字符有,一个字符空的情况

   (3)然后就可以两层for了
          这个时候记住根据题目有不同的决策,取最优

          一般有匹配字符和不匹配字符(如加空格)两种情况


          按照题目而定  

          最后要注意如果是取min初值要最大,max初值最小

          或者直接用其中一个决策作为初值

依然是套模型

初始化的话显然空字符就是全是'-'

然后依然是匹配字符或者是选'-'

爽!!!!

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 112;
char a[MAXN], b[MAXN];
int f[MAXN][MAXN], lena, lenb; int d[5][5] = { 5, -1, -2, -1, -3,
-1, 5, -3, -2, -4,
-2, -3, 5, -2, -2,
-1, -2, -2, 5, -1,
-3, -4, -2, -1, 0 }; int ID(char x)
{
if(x == 'A') return 0;
if(x == 'C') return 1;
if(x == 'G') return 2;
if(x == 'T') return 3;
if(x == '-') return 4;
}
int dist(char x, char y) { return d[ID(x)][ID(y)]; } int main()
{
scanf("%d%s%d%s", &lena, a + 1, &lenb, b + 1);
f[0][0] = 0;
REP(i, 1, lena + 1) f[i][0] = f[i-1][0] + dist(a[i], '-');
REP(i, 1, lenb + 1) f[0][i] = f[0][i-1] + dist(b[i], '-'); REP(i, 1, lena + 1)
REP(j, 1, lenb + 1)
{
f[i][j] = f[i-1][j-1] + dist(a[i], b[j]);
f[i][j] = max(f[i][j], max(f[i-1][j] + dist(a[i], '-'), f[i][j-1] + dist(b[j], '-')));
}
printf("%d\n", f[lena][lenb]); return 0;
}

caioj 1071 动态规划入门(二维一边推4:相似基因) (最长公共子序列拓展)的更多相关文章

  1. caioj 1069 动态规划入门(二维一边推2:顺序对齐)(最长公共子序列拓展总结)

    caioj 1068是最长公共子序列裸体,秒过, 就不写博客了 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示 ...

  2. caioj 1070 动态规划入门(二维一边推3:字符距离)(最长公共子序列拓展)

    复制上一题总结 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符     (2) ...

  3. caioj 1073 动态规划入门(三维一边推:最长公共子序列加强版(三串LCS))

    三维的与二维大同小异,看代码. #include<cstdio> #include<cstring> #include<algorithm> #define REP ...

  4. caioj 1063 动态规划入门(一维一边推1:美元和马克)

    这道题一开始我是这么想的 最后的答案肯定是某次的马克换回来的,但这个该怎么确定?? 实际上应该把范围缩小,只看最后一次和倒数第二次之间有什么联系. 可以发现,只有两种可能,最后一天换或者不换.换的话就 ...

  5. caioj 1067动态规划入门(一维一边推5: 乘积最大(高精度版))

    因为这里涉及到乘号的个数,那么我们可以用f[i][j]表示前i个位乘号为j个时的最大乘积 那么相比上一题就是多了一层枚举多少个乘号的循环,可以得出 f[i][r] = max(f[j - 1][r - ...

  6. caioj 1066 动态规划入门(一维一边推4:护卫队)(分组型dp总结)

    很容易想到f[i]为前i项的最优价值,但是我一直在纠结如果重量满了该怎么办. 正解有点枚举的味道. 就是枚举当前这辆车与这辆车以前的组合一组,在能组的里面取最优的. 然后要记得初始化,因为有min,所 ...

  7. caioj 1065 动态规划入门(一维一边推3:合唱队形)

    就是最长上升子序列,但是要用n^2的算法. #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int ...

  8. C++动态规划实现查找最长公共子序列

    问题描述: 给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列.(给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共 ...

  9. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

随机推荐

  1. Android 常用系统服务

    WindowManager:WindowManager服务是全局的唯一的.它会将用户在屏幕上的操作发送给界面上的各个Window,Activity会将顶层控件注册到WindowManager中.Win ...

  2. c#获取DataTable某一列不重复的值,或者获取某一列的所有值

    实现该功能是用了DataView的筛选功能,DataView表示用于排序.筛选.搜索.编辑和导航的 DataTable 的可绑定数据的自定义视图. 这里做了一个简单易懂的Demo来讲述该方法. 1.建 ...

  3. WordPress 自动草稿和文章修定版本

    写文章的时候发现 WordPress 有两个有意思的地方, WordPress 自动草稿和文章修定版本: 1.点击创建新文章的时候,会在数据库自动生成一条草稿数据: 2.修改数据的时候会将历史文章当做 ...

  4. LNMP升级开启TLSv1.3支持

    LNMP升级开启TLSv1.3支持 TLSv1.3版本的优势:https://baijiahao.baidu.com/s?id=1611365293186683991&wfr=spider&a ...

  5. PHP读xml、写xml(DOM方法)

    <?php /** * 读取的xml的格式 * <urlset> * <url> * <loc>http://www.51buy.com/0.html< ...

  6. luogu P1495 曹冲养猪(中国剩余定理)

    题意 题解 翻到了一个金句 就跟这句话说得一样,就是个裸题. 所以看模板呗. #include<iostream> #include<cstring> #include< ...

  7. 越努力越幸运--2-LD_PRELOAD, fork ,僵尸进程

    开始新的工作了,做了爸爸之后感觉一直都是浑浑噩噩,希望老婆和宝宝一直健康开心~ 最近遇到的问题很多啊,哈哈 1. 装环境时候,需要的glibc 版本不对,我把本地的软链接改了个别名(惯性思维),然后一 ...

  8. Object-C,NSURL,统一资源定位器

    今天晚上最后一个例子,写完休息娱乐一会. URL,统一资源定位器,可以定位网络上的一个资源. 没啥难的,还是对象.方法.API.和Java等语言没有啥区别. 不亲自一点点写一遍,印象不深,今后进一步深 ...

  9. root用户无法切换到cdh的hive账号上

    在/etc/passwd中看到hive账号是登录的终端是/bin/false,而正常的用户配置的都是/bin/bash,因此在root账号su到hive也是没有用的 hive:x:111:111:Hi ...

  10. Memcached存储溢出

    Memcached存储溢出 测试数据生成程序: package com.stoon.test; public class TestFor { public static void main(Strin ...