链接

题解链接:点击打开链接

题意:

给定n个点的树。m个询问

以下n-1个数给出每一个点的父节点,1是root

每一个点有一个字母

以下n个小写字母给出每一个点的字母。

以下m行给出询问:

询问形如 (u, deep) 问u点的子树中,距离根的深度为deep的全部点的字母是否能在随意排列后组成回文串,能输出Yes.

思路:dfs序,给点又一次标号,dfs进入u点的时间戳记为l[u], 离开的时间戳记为r[u], 这样对于某个点u,他的子树节点相应区间都在区间 [l[u], r[u]]内。

把距离根深度同样的点都存到vector里 D[i] 表示深度为i的全部点,在dfs时能够顺便求出。

把询问按深度排序,query[i]表示全部深度为i的询问。

接下来依照深度一层层处理。

对于第i层,把全部处于第i层的节点都更新到26个树状数组上。

然后处理询问,直接查询树状数组上有多少种字母是奇数个的。显然奇数个字母的种数要<=1

处理完第i层,就把树状数组逆向操作。相当于清空树状数组

注意的一个地方就是 询问的深度是随意的,也就是说可能超过实际树的深度,也可能比当前点的深度小。

所以须要初始化一下答案。。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <vector>
#include <string>
#include <time.h>
#include <math.h>
#include <iomanip>
#include <queue>
#include <stack>
#include <set>
#include <map>
const int inf = 1e9;
const double eps = 1e-8;
const double pi = acos(-1.0);
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x < 0) { putchar('-'); x = -x; }
if (x > 9) pt(x / 10);
putchar(x % 10 + '0');
}
using namespace std;
const int N = 5e5 + 100;
typedef long long ll;
typedef pair<int, int> pii;
struct BIT {
int c[N], maxn;
void init(int n) { maxn = n; memset(c, 0, sizeof c); }
inline int Lowbit(int x) { return x&(-x); }
void change(int i, int x)//i点增量为x
{
while (i <= maxn)
{
c[i] += x;
i += Lowbit(i);
}
}
int sum(int x) {//区间求和 [1,x]
int ans = 0;
for (int i = x; i >= 1; i -= Lowbit(i))
ans += c[i];
return ans;
}
int query(int l, int r) {
return sum(r) + sum(l - 1);
}
}t[26];
int n, m;
char s[N];
vector<int>G[N], D[N];
int l[N], r[N], top;
vector<pii>query[N];
bool ans[N];
void dfs(int u, int fa, int dep) {
D[dep].push_back(u);
l[u] = ++top;
for (auto v : G[u])
if (v != fa)dfs(v, u, dep + 1);
r[u] = top;
}
int main() {
rd(n); rd(m);
fill(ans, ans + m + 10, 1);
for (int i = 0; i < 26; i++) t[i].init(n);
for (int i = 2, u; i <= n; i++)rd(u), G[u].push_back(i);
top = 0;
dfs(1, 1, 1);
scanf("%s", s + 1);
for (int i = 1, u, v; i <= m; i++) {
rd(u); rd(v); query[v].push_back(pii(u, i));
}
for (int i = 1; i <= n; i++)
{
if (D[i].size() == 0)break;
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], 1); for (pii Q : query[i])
{
int ou = 0;
for (int j = 0; j < 26; j++)
{
if (t[j].query(l[Q.first], r[Q.first]))
ou += t[j].query(l[Q.first], r[Q.first]) & 1;
}
ans[Q.second] = ou <= 1;
}
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], -1);
}
for (int i = 1; i <= m; i++)ans[i] ? puts("Yes") : puts("No"); return 0;
}
D. Tree Requests
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is
the root of the tree, each of the n - 1 remaining vertices has a parent in
the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi,
the parent index is always less than the index of the vertex (i.e., pi < i).

The depth of the vertex is the number of nodes on the path from the root to v along
the edges. In particular, the depth of the root is equal to 1.

We say that vertex u is in the subtree of vertex v,
if we can get from u to v,
moving from the vertex to the parent. In particular, vertex v is in its subtree.

Roma gives you m queries, the i-th
of which consists of two numbers vihi.
Let's consider the vertices in the subtree vi located
at depthhi.
Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make
a palindrome, but all letters should be used.

Input

The first line contains two integers nm (1 ≤ n, m ≤ 500 000)
— the number of nodes in the tree and queries, respectively.

The following line contains n - 1 integers p2, p3, ..., pn —
the parents of vertices from the second to the n-th (1 ≤ pi < i).

The next line contains n lowercase English letters, the i-th
of these letters is written on vertex i.

Next m lines describe the queries, the i-th
line contains two numbers vihi (1 ≤ vi, hi ≤ n)
— the vertex and the depth that appear in thei-th query.

Output

Print m lines. In the i-th
line print "Yes" (without the quotes), if in the i-th
query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).

Sample test(s)
input
6 5
1 1 1 3 3
zacccd
1 1
3 3
4 1
6 1
1 2
output
Yes
No
Yes
Yes
Yes
Note

String s is a palindrome if reads the same from left to right and
from right to left. In particular, an empty string is a palindrome.

Clarification for the sample test.

In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".

In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d"
respectively. It is impossible to form a palindrome of them.

In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.

In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.

In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c"
and "c". We may form a palindrome "cac".

Codeforces 570D TREE REQUESTS dfs序+树状数组的更多相关文章

  1. Codeforces 570D TREE REQUESTS dfs序+树状数组 异或

    http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory li ...

  2. poj3321-Apple Tree(DFS序+树状数组)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36442   Accepted: 10894 Desc ...

  3. pku-3321 Apple Tree(dfs序+树状数组)

    Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow ...

  4. POJ 3321 Apple Tree(dfs序树状数组)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=10486 题意:一颗有n个分支的苹果树,根为1,每个分支只有一个苹果,给出n- ...

  5. POJ 3321:Apple Tree(dfs序+树状数组)

    题目大意:对树进行m次操作,有两类操作,一种是改变一个点的权值(将0变为1,1变为0),另一种为查询以x为根节点的子树点权值之和,开始时所有点权值为1. 分析: 对树进行dfs,将树变为序列,记录每个 ...

  6. CodeForces 570D - Tree Requests - [DFS序+二分]

    题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...

  7. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  8. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  9. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

随机推荐

  1. usb键鼠驱动分析【钻】

    本文转载自:http://blog.csdn.net/orz415678659/article/details/9197859 一.鼠标 Linux下的usb鼠标驱动在/drivers/hid/usb ...

  2. Android.mk中添加宏定义【转】

    本文转载自:http://blog.csdn.net/huangyabin001/article/details/38302021 在Boardconfig.mk 中添加一个 IS_FLAG := t ...

  3. linux udev 机制【转】

    本文转载自:http://blog.csdn.net/yyt8yyt8/article/details/8020154 1. Linux的热插拔事件由kernel通过中断发现(比如,USB设备插入系统 ...

  4. DNS 隐蔽通道工具资料汇总

    http://www.cnblogs.com/bonelee/p/7651746.html DNS隧道和工具 内含dns2tcp.iodine.dnscat2工具的简单使用说明 iodine工具的使用 ...

  5. Bone Collector(hdoj--2602--01背包)

    Bone Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. JXOI2019 退役记

    day0 考前一天在机房和RyeCatcher,还有高一数竞大佬wyt一起颓三国杀,被深深吸引无法自拔,所谓大考大浪,也算是缓解缓解压力 刷刷空间发现好多外地OIer都赶到江科了,萌生出去见一见我江西 ...

  7. C Linux read write function extension

    前言 - 赠送 readn / writen Linux 上默认的 read 和 write 函数会被信号软中断. 且 read 和 write 函数中第三个参数 count #include < ...

  8. MyBatis输出执行的SQL到控制台

    src\main\resources\application.properties 或者src\main\resources\application.yml 在你的application.proper ...

  9. 基于scrapy-redis组件的分布式爬虫

    scrapy-redis组件安装 分布式实现流程 scrapy-redis组件安装 - 下载scrapy-redis组件:pip install scrapy-redis - 更改redis配置文件: ...

  10. 深入了解Token认证的来龙去脉

    Token 是在服务端产生的,如果前端使用用户名/密码向服务端请求认证,服务端认证成功,那么在服务端会返回 Token 给前端.前端可以在每次请求的时候带上 Token 证明自己的合法地位.   不久 ...