Hadoop MapReduce编程 API入门系列之wordcount版本5(九)
这篇博客,给大家,体会不一样的版本编程。
代码
package zhouls.bigdata.myMapReduce.wordcount1;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
//4个泛型中,前两个是指定mapper输入数据的类型,KEYIN是输入的key的类型,VALUEIN是输入的value的类型
//map 和 reduce 的数据输入输出都是以 key-value对的形式封装的
//默认情况下,框架传递给我们的mapper的输入数据中,key是要处理的文本中一行的起始偏移量,这一行的内容作为value
public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
//mapreduce框架每读一行数据就调用一次该方法
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
//具体业务逻辑就写在这个方法体中,而且我们业务要处理的数据已经被框架传递进来,在方法的参数中 key-value
//key 是这一行数据的起始偏移量 value 是这一行的文本内容
//将这一行的内容转换成string类型
String line = value.toString();
//对这一行的文本按特定分隔符切分
String[] words = StringUtils.split(line, " ");
//遍历这个单词数组输出为kv形式 k:单词 v : 1
for(String word : words){
context.write(new Text(word), new LongWritable(1));
}
}
}
package zhouls.bigdata.myMapReduce.wordcount1;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
//框架在map处理完成之后,将所有kv对缓存起来,进行分组,然后传递一个组<key,valus{}>,调用一次reduce方法
//<hello,{1,1,1,1,1,1.....}>
@Override
protected void reduce(Text key, Iterable<LongWritable> values,Context context)
throws IOException, InterruptedException {
long count = 0;
//遍历value的list,进行累加求和
for(LongWritable value:values){
count += value.get();
}
//输出这一个单词的统计结果
context.write(key, new LongWritable(count));
}
}
package zhouls.bigdata.myMapReduce.wordcount1;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import zhouls.bigdata.myMapReduce.Anagram.Anagram;
/**
* 用来描述一个特定的作业
* 比如,该作业使用哪个类作为逻辑处理中的map,哪个作为reduce
* 还可以指定该作业要处理的数据所在的路径
* 还可以指定改作业输出的结果放到哪个路径
* ....
*
*
*/
public class WCRunner implements Tool {
public int run(String[] arg0) throws Exception {
Configuration conf = new Configuration();
//2删除已经存在的输出目录
Path mypath = new Path(arg0[1]);//下标为1,即是输出路径
FileSystem hdfs = mypath.getFileSystem(conf);//获取文件系统
if (hdfs.isDirectory(mypath))
{//如果文件系统中存在这个输出路径,则删除掉
hdfs.delete(mypath, true);
}
Job wcjob = new Job(conf, "WC");//构建一个job对象,取名为testAnagram
//设置整个job所用的那些类在哪个jar包
wcjob.setJarByClass(WCRunner.class);
//本job使用的mapper和reducer的类
wcjob.setMapperClass(WCMapper.class);
wcjob.setReducerClass(WCReducer.class);
//指定reduce的输出数据kv类型
wcjob.setOutputKeyClass(Text.class);
wcjob.setOutputValueClass(LongWritable.class);
//指定mapper的输出数据kv类型
wcjob.setMapOutputKeyClass(Text.class);
wcjob.setMapOutputValueClass(LongWritable.class);
FileInputFormat.addInputPath(wcjob, new Path(arg0[0]));// 文件输入路径
FileOutputFormat.setOutputPath(wcjob, new Path(arg0[1]));// 文件输出路径
//将job提交给集群运行
wcjob.waitForCompletion(true);
return 0;
}
public static void main(String[] args) throws Exception
{//定义数组来保存输入路径和输出路径
//集群路径
// String[] args0 = { "hdfs://HadoopMaster:9000/wc.txt",
// "hdfs://HadoopMaster:9000/out/wc/"};
//本地路径
String[] args0 = { "./data/wc.txt",
"out/wc/"};
int ec = ToolRunner.run( new Configuration(), new WCRunner(), args0);
System. exit(ec);
}
@Override
public Configuration getConf() {
// TODO Auto-generated method stub
return null;
}
@Override
public void setConf(Configuration arg0) {
// TODO Auto-generated method stub
}
}
Hadoop MapReduce编程 API入门系列之wordcount版本5(九)的更多相关文章
- Hadoop MapReduce编程 API入门系列之wordcount版本1(五)
这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...
- Hadoop MapReduce编程 API入门系列之wordcount版本4(八)
这篇博客,给大家,体会不一样的版本编程. 是将map.combiner.shuffle.reduce等分开放一个.java里.则需要实现Tool. 代码 package zhouls.bigdata. ...
- Hadoop MapReduce编程 API入门系列之wordcount版本3(七)
这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount3; import java.io.IOException; i ...
- Hadoop MapReduce编程 API入门系列之wordcount版本2(六)
这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount4; import java.io.IOException; i ...
- Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)
不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...
- Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)
不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...
- Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)
下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...
- Hadoop MapReduce编程 API入门系列之join(二十六)(未完)
不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...
- Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)
不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...
随机推荐
- AMQP及RabbitMQ
AMQPAMQP协议是一个高级抽象层消息通信协议,RabbitMQ是AMQP协议的实现.它主要包括以下组件: 1.Server(broker): 接受客户端连接,实现AMQP消息队列和路由功能的进程. ...
- ubuntu16.04安装KDE
由于对KDE界面情有独钟,升级到ubuntu之后,第一件事就是安装kde桌面 命令: add-apt-repository ppa:kubuntu-ppa/backports apt-get upda ...
- Altova MapForce AMS/ACI/ISF自定义模板
目前为止,我在百度上得到关于MapForce的信息少之又少,所以把自己的一些经验写下来,与大家分享. 如果要生成xml的话,就可以直接创建xml架构当作数据的目标文件. 以下是我做的AMS&A ...
- vue中需要注意的问题总结(上)
React 与其说是一种框架,倒不如说是一种开发范式.它的核心理念非常简单: 界面/视图就是数据结构的可视化表达UI = f(data) 而界面/视图由组件组合而来UI = f1(data) + f2 ...
- matlab学习下拉菜单
用matlab添加listbox控件 修改string和value值,value为几就对应第几行字符串 添加button按钮,将string值改为“选择x轴参数”,字体大小为10 再添加一个按钮,将s ...
- BZOJ 1705: [Usaco2007 Nov]Telephone Wire 架设电话线 DP + 优化 + 推导
Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...
- PAT_A1148#Werewolf - Simple Version
Source: PAT 1148 Werewolf - Simple Version (20 分) Description: Werewolf(狼人杀) is a game in which the ...
- 【C#】【分享】 XXX分钟学会C#
原文地址 https://www.cnblogs.com/younShieh/p/10945264.html 前几天在刷即刻的时候发现了一个GitHub上的项目,该项目名为"lear ...
- 图的遍历---DFS
类型一:邻接表 题目一:员工的重要性 题目描述 给定一个保存员工信息的数据结构,它包含了员工唯一的id,重要度 和 直系下属的id. 比如,员工1是员工2的领导,员工2是员工3的领导.他们相应的重要度 ...
- 【剑指Offer】29、最小的K个数
题目描述: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 解题思路: 本题最直观的解法就是将输入的n个整数排 ...