BZOJ 1061费用流
思路:
我们可以列出几个不等式
用y0带进去变成等式
下-上 可以消好多东西
我们发现 等式左边的加起来=0
可以把每个方程看成一个点
正->负 连边
跑费用流即可
//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define int long long
#define mem(x,y) memset(x,y,sizeof(x))
const int N=24005,M=1005,inf=0x3f3f3f3f;
int edge[N],cost[N],v[N],w[N],first[M],next[N],tot,ans;
int n,m,xx,yy,zz,least[M],with[M],vis[N],d[M],minn[M];
void Add(int x,int y,int C,int E){edge[tot]=E,cost[tot]=C,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
void add(int x,int y,int C,int E){Add(x,y,C,E),Add(y,x,-C,0);}
bool tell(){
mem(with,0),mem(vis,0),mem(d,0x3f),mem(minn,0x3f);
queue<int>q;q.push(0);d[0]=0;
while(!q.empty()){
int t=q.front();q.pop();vis[t]=0;
for(int i=first[t];~i;i=next[i]){
if(d[v[i]]>d[t]+cost[i]&&edge[i]){
d[v[i]]=d[t]+cost[i],minn[v[i]]=min(minn[t],edge[i]),with[v[i]]=i;
if(!vis[v[i]])vis[v[i]]=1,q.push(v[i]);
}
}
}return d[n+1]<inf;
}
int zeng(){
for(int i=n+1;i;i=v[with[i]^1])
edge[with[i]]-=minn[n+1],edge[with[i]^1]+=minn[n+1];
return minn[n+1]*d[n+1];
}
signed main(){
mem(first,-1);
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lld",&least[i]);
if(least[i]-least[i-1]>0)add(0,i,0,least[i]-least[i-1]);
else add(i,n+1,0,least[i-1]-least[i]);
if(i!=n)add(i+1,i,0,inf);
}
for(int i=1;i<=m;i++)
scanf("%lld%lld%lld",&xx,&yy,&zz),add(xx,yy+1,zz,inf);
while(tell())ans+=zeng();
printf("%lld\n",ans);
}
BZOJ 1061费用流的更多相关文章
- bzoj 3171 费用流
每个格拆成两个点,出点连能到的点的入点,如果是箭头指向 方向费用就是0,要不就是1,源点连所有出点,所有入点连 汇点,然后费用流 /********************************** ...
- bzoj 1449 费用流
思路:先把没有进行的场次规定双方都为负,对于x胜y负 变为x + 1胜 y - 1 负所需要的代价为 2 * C[ i ] * x - 2 * D[ i ] * y + C[ i ] + D[ i ...
- BZOJ 1283 费用流
思路: 最大费用最大流 i->i+1 连边k 费用0 i->i+m (大于n的时候就连到汇) 连边1 费用a[i] //By SiriusRen #include <queue> ...
- bzoj 1070 费用流
//可以网络流,但是要怎么分配每辆车让谁维修以及维修顺序呢.可以考虑每辆车维修时间对总结果的贡献,把每个修车人拆成n个点共n*m个点, //n辆车连向这n*m个点,流量1,费用k*修车时间,其中k(1 ...
- bzoj 2668 费用流
我们可以把初始状态转化为目标状态这一约束转化为将黑子移动到目标状态所需要的最少步数. 除了初始点和目标点之外,剩下的点如果被经过那么就会被交换两次,所以我们将一个点拆成3个点,a,b,c,新建附加源点 ...
- bzoj 2245 费用流
比较裸 源点连人,每个人连自己的工作,工作连汇,然后因为人的费用是 分度的,且是随工作数非降的,所以我们拆边,源点连到每个人s+1条边 容量是每段的件数,费用是愤怒 /**************** ...
- BZOJ 3280 费用流
思路: 同BZOJ 1221 //By SiriusRen #include <queue> #include <cstdio> #include <cstring> ...
- BZOJ 4514 费用流
思路: 懒得写了 http://blog.csdn.net/werkeytom_ftd/article/details/51277482 //By SiriusRen #include <que ...
- 从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流)
从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流) 题面 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运 ...
随机推荐
- 使用cookies查询商品详情
易买网项目完工,把一些新知识记录下来,以便以后查阅,也方便他人借阅.介绍使用cookies查询商品详情. 第一步:建立商品实体类. 第二步:连接Oracle数据库. 第三步:使用三层架构. 效果图如下 ...
- dubbo介绍及实战
1. dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封 ...
- OpenCV:OpenCV中的 parallel_for 和opencv parallel_for_
OpenCV使用OMP完成并行运算,在使用AdaBoost检测的时候,在cascadedetect.cpp 里面,大量使用 parallel_for_(Range(0, stripCount), Ca ...
- 用VS Code Debug Python
- asp.net mvc 学习步骤
入门篇(一) ASP.NET MVC案例教程(基于ASP.NET MVC beta) http://www.cnblogs.com/leoo2sk/archive/2008/10/27/1320285 ...
- Lazarus开发环境编译选项配置
Lazarus的环境配置让人有点犯晕,对于刚从delphi转到lazarus上的我来说,每次新建工程都会遇到一堆Can't find unit xxxx used by xxxx的问题,问题虽然不大, ...
- Centos6.6 安装Redis
一.介绍 redis在做数据库缓存,session存储,消息队列上用的比较多 二.安装 $ yum install -y wget gcc make tcl $ wget http://downloa ...
- node、Mongo项目如何前后端分离提供接口给前端
node接口编写,vue-cli代理接口方法 通常前端使用的MocK 数据的方法,去模拟假的数据,但是如果有node Mongodb 去写数据的话就不需要在去mock 数据了,具体的方法如下. 首先 ...
- 如何将一个已有的项目托管到github或是码云上?git的配置
场景一:已有的一个项目,要把它托管到Git上去,步骤和方法如下: 方法一: ①在工程的路径下 : git init 建一个裸仓库. ②远程仓库地址 :将本地的仓库和远程仓库关联 git remote ...
- namespace、struct、enum、union、string(day01)
一 C++概述 C++历史背景 )C++的江湖地位 jave C C++ C# python )C++之父:Bjarne Stroustrup(--) ,Cpre,为C语言增加类的机制 ,Bjarne ...