UVA 10891 区间DP+博弈思想
很明显带有博弈的味道。让A-B最大,由于双方都采用最佳策略,在博弈中有一个要求时,让一方的值尽量大。而且由于是序列,所以很容易想到状态dp[i][j],表示序列从i到j。结合博弈中的思想,表示初始状态i->j情况下,先手能获得的最大分数。后手能获得的就是sum[i][j]-dp[i][j]。接下来枚举先手选取的是两端的哪一段即可。
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; const int N=105; int dp[N][N];
int sum[N][N];
int arr[N]; int main(){
int n;
while(scanf("%d",&n),n){
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
scanf("%d",&arr[i]);
for(int i=n;i>=1;i--){
for(int j=i;j<=n;j++)
if(i==j) sum[i][i]=arr[i];
else sum[i][j]=sum[i][j-1]+arr[j];
}
/* for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
cout<<sum[i][j]<<" ";
cout<<endl;
}*/
for(int i=n;i>=1;i--){
for(int j=i;j<=n;j++){
if(i==j) dp[i][j]=sum[i][j];
else{
int m=0;
for(int k=i+1;k<=j;k++)
m=min(dp[k][j],m);
for(int k=j-1;k>=i;k--)
m=min(dp[i][k],m);
dp[i][j]=sum[i][j]-m;
}
}
}
/* for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
cout<<dp[i][j]<<" ";
cout<<endl;
}*/ printf("%d\n",dp[1][n]-sum[1][n]+dp[1][n]);
}
return 0;
}
UVA 10891 区间DP+博弈思想的更多相关文章
- uva 10891 区间dp+记忆化搜索
https://vjudge.net/problem/UVA-10891 给定一个序列x,A和B依次取数,规则是每次只能从头或者尾部取走若干个数,A和B采取的策略使得自己取出的数尽量和最大,A是先手, ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- UVA 1626 区间dp、打印路径
uva 紫书例题,这个区间dp最容易错的应该是(S)这种匹配情况,如果不是题目中给了提示我就忽略了,只想着左右分割忘记了这种特殊的例子. dp[i][j]=MIN{dp[i+1][j-1] | if( ...
- BZOJ 2101 [Usaco2010 Dec]Treasure Chest 藏宝箱:区间dp 博弈【两种表示方法】【压维】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2101 题意: 共有n枚金币,第i枚金币的价值是w[i]. 把金币排成一条直线,Bessie ...
- 紫书 例题 9-9 UVa 10003 (区间dp+递推顺序)
区间dp,可以以一个区间为状态,f[i][j]是第i个切点到第j个切点的木棍的最小费用 那么对于当前这一个区间,枚举切点k, 可以得出f[i][j] = min{dp(i, k) + dp(k, j) ...
- UVA 10003 区间DP
这个题目蛮有新意的,一度导致我没看透他是区间DP 给一个0-L长度的木板,然后给N个数,表示0-L之间的某个刻度,最后要用刀把每个刻度都切一下 使其断开,然后每次分裂的cost是分裂前的木板的长度.求 ...
- UVa 1630 区间DP Folding
一个字符串如果能简写,要么是重复多次,按题中的要求简写:要么是左右两个部分分别简写后再拼起来. dp(i, j)表示字串(i, j)所能被简写的最短的字符串. 判断一个字符串是否为周期串以及求出它的周 ...
- 紫书 例题 9-10 UVa 1626 (区间dp + 输出技巧)
当前区间f(i, j)分两种情况,一种是s[i]于s[j]符合要求,那么可以转移到f[i + 1][j - 1] 这样答案只会更小或者相等 第二种是直接分成两个部分, 即f[i][j] = f[i][ ...
- 区间DP入门题目合集
区间DP主要思想是先在小区间取得最优解,然后小区间合并时更新大区间的最优解. 基本代码: //mst(dp,0) 初始化DP数组 ;i<=n;i++) { dp[i][i]=初始 ...
随机推荐
- Android开发之Intent.Action Android中Intent的各种常见作用
1 Intent.ACTION_MAIN String: android.intent.action.MAIN 标识Activity为一个程序的开始.比较常用. Input:nothing Outpu ...
- 利用python去除红章
近期接的一个需求需要去除图片的红章,用到了PIL库. from PIL import Image,ImageEnhanceimport os#f="5-12 - 0001.tif" ...
- 357 Count Numbers with Unique Digits 计算各个位数不同的数字个数
给定一个非负整数 n,计算各位数字都不同的数字 x 的个数,其中 0 ≤ x < 10n.示例:给定 n = 2,返回 91.(答案应该是除[11,22,33,44,55,66,77,88,99 ...
- 使用yum命令更新时锁住了怎么办?
出现的状况如下: [root@iZwz951sp834mvbed8gdzzZ ~]# yum update kernelLoaded plugins: fastestmirrorExisting lo ...
- [转]linux tee 命令详解
转自: http://codingstandards.iteye.com/blog/833695 用途说明 在执行Linux命令时,我们可以把输出重定向到文件中,比如 ls >a.txt,这时我 ...
- Combox两级联动会经常出现的错误
例如: 当我们遇到这种情况:(下拉框的隐藏值和显示值皆为实体类进行绑定值时)下拉框的隐藏值并不能成功获取到. 我们就可以使用下面 的方案来解决 ok ,成功获取到隐藏值. 还有一个,附加解决方案:
- C#中的分层开发
一般来说,分层主要分三层即:UI(User Interface) 界面显示层,BLL(Business Logic Layer)业务逻辑层,以及DAL(Data Access Layer)数据访问层. ...
- 百度之星2017初赛B1006 小小粉丝度度熊
思路: 考虑到补签卡一定是连续放置才更优,所以直接根据起始位置枚举.预先处理区间之间的gap的前缀和,在枚举过程中二分即可.复杂度O(nlog(n)). 实现: #include <iostre ...
- 软件架构自学笔记----分享“去哪儿 Hadoop 集群 Federation 数据拷贝优化”
去哪儿 Hadoop 集群 Federation 数据拷贝优化 背景 去哪儿 Hadoop 集群随着去哪儿网的发展一直在优化改进,基本保证了业务数据存储量和计算量爆发式增长下的存储服务质量.然而,随着 ...
- [Windows Server 2003] 安装网站伪静态
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:安装IIS伪静 ...