思路:

按照从大到小排个序

维护两个数组 一个是消元后的 另一个是 按照消元的位置排的

不断 维护从大到小

(呃具体见代码)

//By SiriusRen
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define int long long
#define N 105
int n,a[N],b[N],flag=1,ans;
signed main(){
scanf("%lld",&n);
for(int i=1;i<=n;i++)scanf("%lld",&a[i]),ans+=a[i],b[i]=a[i];
sort(a+1,a+1+n,greater<int>()),sort(b+1,b+1+n,greater<int>());
for(int i=1<<30,j;i;i>>=1){
for(j=flag;j<=n;j++)if(a[j]&i)break;
if(j==n+1)continue;
for(int k=j-1;k>=flag;k--)swap(a[k+1],a[k]),swap(b[k+1],b[k]);
for(int k=1;k<=n;k++)if(k!=flag&&(a[k]&i))a[k]^=a[flag];
ans-=b[flag];
flag++;
}
printf("%lld\n",ans?ans:-1);
}

BZOJ 3105 线性基 高斯消元的更多相关文章

  1. [bzoj 2844]线性基+高斯消元

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...

  2. Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)

    题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...

  3. 【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)

    bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每 ...

  4. [hdu 3949]线性基+高斯消元

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...

  5. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  6. 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)

    Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...

  7. HDU 3949 XOR [线性基|高斯消元]

    目录 题目链接 题解 代码 题目链接 HDU 3949 XOR 题解 hdu3949XOR 搞死消元找到一组线性无关组 消出对角矩阵后 对于k二进制拆分 对于每列只有有一个1的,显然可以用k的二进制数 ...

  8. BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)

    BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...

  9. HDU 3949 XOR ——线形基 高斯消元

    [题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...

随机推荐

  1. Linux下打包、压缩和解压

    命令使用:tar  主选项+辅选项  压缩后文件名  要压缩的文件 -c 建立压缩文件(常用) -x 解压(常用) -t 查看压缩文件(常用) -r 向压缩文件末尾追加文件 -u 更新一个压缩包中的文 ...

  2. 修改织梦plus目录名

    1.修改plus目录名 修改inlclude文件夹下common.inc.php 140行 //插件目录,这个目录是用于存放计数器.投票.评论等程序的必要动态程序 $cfg_plus_dir = $c ...

  3. DevExpress 如何读取当前目录下文件,加载至grid

    DBFileName=DevExpress.Utils.FileHelper.FindingFileName(Appliaction.StartupPath,"Data\\Product&g ...

  4. PCL:PCL与MFC 冲突总结

    (1):max,min问题 MFC程序过程中使用STL一些类编译出错,放到Console Application里一切正常.比如: void CMyDialog::OnBnClickedButton1 ...

  5. CorelDRAW 2019新品发布,行业大咖就差你了

    近日,由苏州思杰马克丁软件公司独家代理的CorelDRAW 2019将在苏州开启一场设计上的饕餮盛宴,您报名了么? 不管您是专业的设计师还是热爱设计的狂热粉丝,都将有机会参与到我们的活动中,为了这场盛 ...

  6. 图片无损放大软件PhotoZoom分屏预览功能 ,简直好用!

    PhotoZoom是一款智能放大图片软件,很多用户在初次使用PhotoZoom,发现图片所处的区域上方有四个不同方式的预览选项.因为很多初学者使用时不明白这四个按钮有什么作用,所以小编接下来讲解一下P ...

  7. Select, Poll,Epoll

    Date: 2019-06-19 Author: Sun 1. Select ​ select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当se ...

  8. 【转载】springboot注解

    https://blog.csdn.net/yitian_66/article/details/80866571 springboot注解:@Service: 注解在类上,表示这是一个业务层bean@ ...

  9. Problem 13

    Problem 13 # Problem_13 """ Work out the first ten digits of the sum of the following ...

  10. Python面向对象之静态方法、静态方法与类方法

    静态属性: 类调用函数属性时,需要先将类实例化,再将实例作为函数属性传入:类的实例调用函数属性时需要在后面加括号. class Building: def __init__(self, name, o ...