Python数据分析----scipy稀疏矩阵
一、sparse模块:
python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生。本文的大部分内容,其实就是基于sparse模块而来的
导入模块:from scipy import sparse
二、七种矩阵类型
- coo_matrix
- dok_matrix
- lil_matrix
- dia_matrix
- csr_matrix
- csc_matrix
- bsr_matrix
三、coo_matrix
coo_matrix是最简单的存储方式。采用三个数组row、col和data保存非零元素的信息。这三个数组的长度相同,row保存元素的行,col保存元素的列,data保存元素的值。一般来说,coo_matrix主要用来创建矩阵,因为coo_matrix无法对矩阵的元素进行增删改等操作,一旦矩阵创建成功以后,会转化为其他形式的矩阵。data = [5,2,3,0]
>>> row = [2,2,3,2]
>>> col = [3,4,2,3]
>>> c = sparse.coo_matrix((data,(row,col)),shape=(5,6))
>>> print c.toarray()
[[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 5 2 0]
[0 0 3 0 0 0]
[0 0 0 0 0 0]]
稍微需要注意的一点是,用coo_matrix创建矩阵的时候,相同的行列坐标可以出现多次。矩阵被真正创建完成以后,相应的坐标值会加起来得到最终的结果。
四、dok_matrix与lil_matrix
dok_matrix和lil_matrix适用的场景是逐渐添加矩阵的元素。
doc_matrix的策略是采用字典来记录矩阵中不为0的元素。自然,字典的key存的是记录元素的位置信息的元祖,value是记录元素的具体值。
>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
... for j in range(5):
... S[i, j] = i + j
...
>>> print S.toarray()
[[ 0. 1. 2. 3. 4.]
[ 1. 2. 3. 4. 5.]
[ 2. 3. 4. 5. 6.]
[ 3. 4. 5. 6. 7.]
[ 4. 5. 6. 7. 8.]]
lil_matrix则是使用两个列表存储非0元素。data保存每行中的非零元素,rows保存非零元素所在的列。这种格式也很适合逐个添加元素,并且能快速获取行相关的数据。
>>> from scipy.sparse import lil_matrix
>>> l = lil_matrix((6,5))
>>> l[2,3] = 1
>>> l[3,4] = 2
>>> l[3,2] = 3
>>> print l.toarray()
[[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 1. 0.]
[ 0. 0. 3. 0. 2.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]]
>>> print l.data
[[] [] [1.0] [3.0, 2.0] [] []]
>>> print l.rows
[[] [] [3] [2, 4] [] []]
五、dia_matrix
这是一种对角线的存储方式。其中,列代表对角线,行代表行。如果对角线上的元素全为0,则省略。
如果原始矩阵是个对角性很好的矩阵那压缩率会非常高。
找了网络上的一张图,大家就很容易能看明白其中的原理。

六、csr_matrix与csc_matrix
csr_matrix,全名为Compressed Sparse Row,是按行对矩阵进行压缩的。CSR需要三类数据:数值,列号,以及行偏移量。CSR是一种编码的方式,其中,数值与列号的含义,与coo里是一致的。行偏移表示某一行的第一个元素在values里面的起始偏移位置。
同样在网络上找了一张图,能比较好反映其中的原理。
以官方文档为例,此时data代表的是存储的值的数组,indices代表的是每一行中第几列有对应data中的元素,即从indices中可以推断出列的信息,
indptr则用来推断出行的信息,默认元素开始为0,第一个元素为2,则证明第一行中有2-0=2个元素,所以将data数组中前另个元素写入第一行中,而indices前两个元素为0,2,则代表第0列和第2列。前两第二个元素为3,证明第二行中有3-2=1个元素,该元素为data[2]=3,且存储在indices[2] = 2列中。依次类推
>>> from scipy.sparse import csr_matrix
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
不难看出,csr_matrix比较适合用来做真正的矩阵运算。
至于csc_matrix,跟csr_matrix类似,只不过是基于列的方式压缩的,不再单独介绍。
七、bsr_matrix
按分块的思想对矩阵进行压缩。

摘自:https://blog.csdn.net/bitcarmanlee/article/details/52668477
Python数据分析----scipy稀疏矩阵的更多相关文章
- python数据分析scipy和matplotlib(三)
Scipy 在numpy基础上增加了众多的数学.科学及工程常用的库函数: 线性代数.常微分方程求解.信号处理.图像处理.稀疏矩阵等: Matplotlib 用于创建出版质量图表的绘图工具库: 目的是为 ...
- python数据分析01准备工作
第1章 准备工作 1.1 本书的内容 本书讲的是利用Python进行数据控制.处理.整理.分析等方面的具体细节和基本要点.我的目标是介绍Python编程和用于数据处理的库和工具环境,掌握这些,可以让你 ...
- Python数据分析基础教程
Python数据分析基础教程(第2版)(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1_FsReTBCaL_PzKhM0o6l0g 提取码:nkhw 复制这段内容后 ...
- [Python数据挖掘]第2章、Python数据分析简介
<Python数据分析与挖掘实战>的数据和代码,可从“泰迪杯”竞赛网站(http://www.tipdm.org/tj/661.jhtml)下载获得 1.Python数据结构 2.Nump ...
- 《Python数据分析与挖掘实战》读书笔记
大致扫了一遍,具体的代码基本都没看了,毕竟我还不懂python,并且在手机端的排版,这些代码没法看. 有收获,至少了解到以下几点: 一. Python的语法挺有意思的 有一些类似于JavaSc ...
- python数据分析实用小抄
1. python数据分析基础 2. numpy 3. Scikit-Learn 4. Bokeh 5. Scipy 6. Pandas 转载于:http://www.jianshu.com/p/ ...
- Python数据分析入门
Python数据分析入门 最近,Analysis with Programming加入了Planet Python.作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析.具体内 ...
- KNIME + Python = 数据分析+报表全流程
Python 数据分析环境 数据分析领域有很多可选方案,例如SPSS傻瓜式分析工具,SAS专业性商业分析工具,R和python这类需要代码编程类的工具.个人选择是python这类,包括pandas,n ...
- python数据分析Numpy(二)
Numpy (Numerical Python) 高性能科学计算和数据分析的基础包: ndarray,多维数组(矩阵),具有矢量运算能力,快速.节省空间: 矩阵运算,无需循环,可以完成类似Matlab ...
随机推荐
- HDU 1561&HDU 3449 一类简单依赖背包问题
HDU 1561.这道是树形DP了,所谓依赖背包,就是选A前必须选B,这样的问题.1561很明显是这样的题了.把0点当成ROOT就好,然后选子节点前必须先选根,所以初始化数组每一行为该根点的值.由于多 ...
- 【Java并发编程实战】—– AQS(四):CLH同步队列
在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形. 其主要从双方面进行了改造:节点的结构与节点等待机制.在结构上引入了 ...
- HTML如何让IMG自动适应DIV容器大小
版权声明:本文为博主原创文章,未经博主允许不得转载.作者:沙师弟专栏 https://blog.csdn.net/u014597198/article/details/80403946HTML如何让I ...
- 多线程编程和Java网络编程
1. 线程概述 多任务处理有两种类型:基于进程.基于线程(进程是指一种“自包容”的运行程序,有自己的地址空间; 线程是进程内部单一的一个顺序控制流) 基于进程的特点是允许计算机同时运行两个或更多的程序 ...
- 0605-类的继承、重写、parent、final
定义一个子类(man) //定义一个类 class renlei{ var $name = '王五'; var $age = ''; var $sex = ''; var $todo = ''; fu ...
- [Apple开发者帐户帮助]六、配置应用服务(1.2)Apple Pay:在网络上配置Apple Pay
网上Apple Pay允许用户在您的网络应用中购买商品和服务. 首先在您的开发者帐户中创建一个商家标识符,该标识符可以将Apple Pay唯一标识为能够接受付款的商家.您可以为多个本机和Web应用程序 ...
- MarkDown流程图概要
要素 流程元素定义: 名称=>类型: 显示名称 控制流程定义: 名称1([yes,no],right)->名称2 注意事项 流程元素定义在代码上部, 流程走向定义在代码下部 名称可以取中文 ...
- ROS-TF-监听
前言:监听第一只海龟的位置,然后让第二只海龟跟随第一只海龟. 通过监听tf,我们可以避免繁琐的旋转矩阵的计算,而直接获取我们需要的相关信息. 一.新建cpp文件 新建turtle_tf_listene ...
- MySQL 的单表查询
单表查询 语法: 一.单表查询的语法 SELECT 字段1,字段2 ,...FROM 表名 WHERE 条件 GROUP BY field HAVING 筛选 ORDER BY filed LIMIT ...
- 5.14JDBC
一.##JDBC 1. 概念:Java DataBase Connectivity Java 数据库连接, Java语言操作数据库. JDBC本质:其实是官方(sun公司)定义的一套操作所有关系型数 ...