http://acm.hdu.edu.cn/showproblem.php?pid=1054

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8510    Accepted Submission(s): 4096

Problem Description
Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
or
node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

For example for the tree:

the solution is one soldier ( at the node 1).

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:

 
Sample Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
 
Sample Output
1
2
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  1053 1151 1281 1142 1233 
 
矩阵跑不过去了、、
 #include <cstring>
#include <cstdio> const int N();
int n,sumedge,head[N];
struct Edge
{
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v]);
head[v]=sumedge;
} int match[N];
bool vis[N];
bool find(int u)
{
for(int v,i=head[u];i;i=edge[i].next)
if(!vis[v=edge[i].v])
{
vis[v]=;
if(!match[v]||find(match[v]))
{
match[v]=u;
return true;
}
}
return false;
} inline void read(int &x)
{
x=; register char ch=getchar();
for(;ch>''||ch<'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
} int main()
{
for(;~scanf("%d",&n);)
{
int ans=;sumedge=;
for(int u,k,i=;i<n;i++)
{
read(u),read(k);
for(int v;k--;)
read(v),ins(u+,v+);
}
for(int i=;i<=n;i++)
{
if(find(i)) ans++;
memset(vis,,sizeof(vis));
}
memset(edge,,sizeof(edge));
memset(head,,sizeof(head));
memset(match,,sizeof(match));
printf("%d\n",ans>>);
}
return ;
}

HDU——T 1054 Strategic Game的更多相关文章

  1. HDU ACM 1054 Strategic Game 二分图最小顶点覆盖?树形DP

    分析:这里使用树形DP做. 1.最小顶点覆盖做法:最小顶点覆盖 == 最大匹配(双向图)/2. 2.树形DP: dp[i][0]表示i为根节点,而且该节点不放,所需的最少的点数. dp[i][1]表示 ...

  2. HDU 1054 Strategic Game(最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:给你一棵树,选取树上最少的节点使得可以覆盖整棵树. 解题思路: 首先树肯定是二分图,因 ...

  3. HDU - 1054 Strategic Game(二分图最小点覆盖/树形dp)

    d.一颗树,选最少的点覆盖所有边 s. 1.可以转成二分图的最小点覆盖来做.不过转换后要把匹配数除以2,这个待细看. 2.也可以用树形dp c.匈牙利算法(邻接表,用vector实现): /* 用ST ...

  4. HDU 1054:Strategic Game

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. HDU 1054 Strategic Game(树形DP)

    Problem Description Bob enjoys playing computer games, especially strategic games, but sometimes he ...

  6. HDU 1054 Strategic Game(树形DP)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. hdu 1054 Strategic Game 经典树形DP

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. hdu 1054 Strategic Game (二分匹配)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 1054 Strategic Game(tree dp)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. XML概述

    本节要点: 标记语言的定义 XML简介 XML与HTML 比较 XML与数据库比较 XML的特点 XML结构 1          标记语言的定义 “XML.SGML.HTML”中的“ML”(Mark ...

  2. PatentTips - Optimizing power usage by factoring processor architectural events to PMU

    BACKGROUND Processor power consumption has become a major issue in recent years. The current trend o ...

  3. UML基本架构建模--获取类

     Getting Started 開始 Modeling a system involves identifying the things that are important to your p ...

  4. ios除去可变字符串中的某些字符

    //除去字符串中的"111@" NSMutableString *str = [[NSMutableString alloc]initWithFormat:@"111@s ...

  5. 使用android.graphics.Path类自绘制PopupWindow背景

    PopupWindow简单介绍 PopupWindow是悬浮在当前activity上的一个容器,用它能够展示随意的内容. PopupWindow跟位置有关的API有以下几个: showAsDropDo ...

  6. Android 获取屏幕截图 和保存到本地的sd卡路径下

    /** * 获取和保存当前屏幕的截图 */ private void GetandSaveCurrentImage() { //1.构建Bitmap WindowManager windowManag ...

  7. iOS开发之autoLayout constraint

    前言 ios设备的尺寸越来越多,针对一款app可能要适配到多种设备.多种尺寸.所以.我们期望我们的app可以autoLayout.本文主要介绍在Xcode中使用constraint.未来会不定期对此文 ...

  8. 2016.03.10,英语,《Vocabulary Builder》Unit 05

    mal: means bad. malpractice [ˌmæl'præktɪs] n. 失职, 行为不当; malady ['mælədi] n. 病, 疾病, 弊病; malodorous [ˌ ...

  9. Linux就该这么学 20181007(第十一章ftp)

    参考链接https://www.linuxprobe.com/ iptables -F #ftp 21端口 #主动模式,被动模式 #匿名用户 本地用户 虚拟用户 vim /etc/vsftpd/vsf ...

  10. 算法入门经典第六章 例题6-14 Abbott的复仇(Abbott's Revenge)BFS算法实现

    Sample Input 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ELF * 2 3 SF ...