乍一看我不会。

先不考虑加点。

先考虑没有那个除\(2\)。

考虑每一条边的贡献,假设某一条边把这棵树分成大小为x,y的两个部分。

那么这条边最多可以被使用\(min(x,y)*2\)次(因为有进有出),即贡献最大为\(min(x,y)*2*\)这条边的权值。

那么能不能让每一条边的被使用达到最大呢?

显然可以。

那怎么快速算这个东西呢?不可能每加一个点就dfs一遍吧。那样就\(T\)飞了。

实际上这个东西就是每个点到树的重心的距离\(*2\)。

为什么?因为满足以树的重心为根每一个子树大小\(<\)总共的节点数。每一棵子树内所有点都要向子树外也就是根(重心)连边。

然后发现这个除\(2\)没有向下取整。

所以就是求所有的点到重心的距离和。

然后加点的话可以离线然后\(dfn序\)维护一下。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define ls now<<1
#define rs now<<1|1
const int N=101000;
int cnt,head[N];
struct edge{
int to,nxt;
}e[N*2];
void add_edge(int u,int v){
cnt++;
e[cnt].nxt=head[u];
e[cnt].to=v;
head[u]=cnt;
}
int size[N],fa[N][22],dep[N],dfn[N],tot;
void dfs(int u,int f){
size[u]=1;
dfn[u]=++tot;
fa[u][0]=f;dep[u]=dep[f]+1;
for(int i=1;i<=20;i++)fa[u][i]=fa[fa[u][i-1]][i-1];
int maxson=-1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f)continue;
dfs(v,u);
size[u]+=size[v];
}
}
int getlca(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=20;i>=0;i--)
if(dep[fa[x][i]]>=dep[y])x=fa[x][i];
if(x==y)return x;
for(int i=20;i>=0;i--)
if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
int sum[N*4];
void update(int now){
sum[now]=sum[ls]+sum[rs];
}
void build(int l,int r,int now){
if(l==r){
if(l==1)sum[l]=1;
return ;
}
int mid=(l+r)>>1;
build(l,mid,ls);
build(mid+1,r,rs);
update(now);
}
void add(int l,int r,int x,int now){
if(l==r){
sum[now]=1;
return;
}
int mid=(l+r)>>1;
if(x>mid)add(mid+1,r,x,rs);
else add(l,mid,x,ls);
update(now);
}
int check(int l,int r,int L,int R,int now){
if(l==L&&r==R)return sum[now];
int mid=(l+r)>>1;
if(L>mid)return check(mid+1,r,L,R,rs);
else if(R<=mid)return check(l,mid,L,R,ls);
else return check(l,mid,L,mid,ls)+check(mid+1,r,mid+1,R,rs);
}
int up(int x,int y){
for(int i=20;i>=0;i--)
if(dep[fa[x][i]]>dep[y])x=fa[x][i];
return x;
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int n,root;
long long ans;
int main(){
n=read();n++;
root=1;ans=0;
for(int i=2;i<=n;i++){
int v=read();
add_edge(i,v);add_edge(v,i);
}
dfs(1,0);
build(1,n,1);
for(int i=2;i<=n;i++){
add(1,n,dfn[i],1);
int lca=getlca(root,i);
ans+=(long long)(dep[root]+dep[i]-2ll*dep[lca]);
if(lca==root){
int x=up(i,root);
int sizex=check(1,n,dfn[x],dfn[x]+size[x]-1,1);
if(sizex>i-sizex)root=x,ans+=(long long)(i-sizex*2ll);
}
else{
int x=fa[root][0];
int sizex=check(1,n,dfn[root],dfn[root]+size[root]-1,1);
if(i-sizex>sizex)root=x,ans+=(long long)(sizex*2ll-i);
}
printf("%lld\n",ans);
}
return 0;
}

51nod 1576 Tree and permutation(树的重心+dfn序)的更多相关文章

  1. POJ 2378 Tree Cutting (树的重心,微变形)

    题意: 给定一棵树,n个节点,若删除点v使得剩下的连通快最大都不超过n/2,则称这样的点满足要求.求所有这样的点,若没有这样的点,输出NONE. 思路: 只需要拿“求树的重心”的代码改一行就OK了.因 ...

  2. HDU6446 Tree and Permutation(树、推公式)

    题意: 给一棵N个点的树,对应于一个长为N的全排列,对于排列的每个相邻数字a和b,他们的贡献是对应树上顶点a和b的路径长,求所有排列的贡献和 思路: 对每一条边,边左边有x个点,右边有y个点,x+y= ...

  3. CF383C Propagating tree (线段树,欧拉序)

    \(tag\)没开够\(WA\)了一发... 求出\(dfs\)序,然后按深度分类更新与查询. #include <iostream> #include <cstdio> #i ...

  4. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  5. POJ 2378.Tree Cutting 树形dp 树的重心

    Tree Cutting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4834   Accepted: 2958 Desc ...

  6. 51Nod 1737 配对(树的重心)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1737 题意: 思路: 树的重心. 树的重心就是其所以子树的最大的子树结点 ...

  7. Codeforces Round #268 (Div. 1) 468D Tree(杜教题+树的重心+线段树+set)

    题目大意 给出一棵树,边上有权值,要求给出一个1到n的排列p,使得sigma d(i, pi)最大,且p的字典序尽量小. d(u, v)为树上两点u和v的距离 题解:一开始没看出来p需要每个数都不同, ...

  8. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  9. POJ3107Godfather[树形DP 树的重心]

    Godfather Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6121   Accepted: 2164 Descrip ...

随机推荐

  1. 【转】H5 input search 提交事件

    欲实现一个文字搜索的功能,要求输入时,键盘回车按钮提示显示为“搜索”.效果如下: 开始~ input type=text并不能达到这种效果,google了一下,HTML5 增加的type=search ...

  2. [BZOJ1999] 树网的核 [数据加强版] (树的直径)

    传送门 如果只是想验证算法正确性这里是洛谷数据未加强版 Description 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(treenet ...

  3. Nginx 的安装 与 启动

    没有图文说明,是我看着视频一步一步照做的,安装过程了,也随便把步骤记录下来了. 我是新装 Linux 服务器,所以安装过程中出现的错误也是第一遇到,希望对你们有所帮助. 也是方便自己以后再次安装 ni ...

  4. Orcale-利用闪回恢复数据方法

    一.delete误删 方法1:如果表结构没有改变,直接闪回整个表,具体步骤: --首先需要表闪回权限,开启行移动功能 alter table 表名 enable row movement; --执行闪 ...

  5. vue项目优化--使用CDN和Gzip

    使用vue-cli构建的vue项目,在打包发布的时候,发现打包后的文件体积很大,使用webpack-bundle-analyzer分析后,发现占用空间最多的是引用的第三方依赖.第三方的依赖文件可以使用 ...

  6. Python半双工聊天

    半双工聊天 半双工聊天.创建一个简单的半双工聊天程序.指定半双工,我们的意思就是,当建立一个连接且服务开始后,只有一个人能打字,而另一个参与者在得到输入消息提示之前必须等待消息.并且,一旦发送者发送了 ...

  7. java深入的单例模式

    在GoF的23种设计模式中,单例模式是比较简单的一种.然而,有时候越是简单的东西越容易出现问题.下面就单例设计模式详细的探讨一下.   所谓单例模式,简单来说,就是在整个应用中保证只有一个类的实例存在 ...

  8. C 语言预编译 #if #else

    这个方法我一般用来调试的时候用,有时候串口打印信息太多,一条条注释就很麻烦,于是就用这种方法,定义个宏变量,判断宏变量的条件,来达到改变宏变量的值控制那些代码编译,那些不编译的目的,这样就不用一条条代 ...

  9. HDU 3698 Let the light guide us

    Let the light guide us Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on HDU. ...

  10. Memcache Redis 与Mogodb优缺点

    MemcachedMemcached的优点: Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key.value的字节大小以及服务器硬件性能,日常环境中QPS高峰大约 ...