原文地址:http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/

This example-driven tutorial gives an in-depth overview about Java 8 streams. When I first read about the Stream API, I was confused about the name since it sounds similar toInputStream and OutputStream from Java I/O. But Java 8 streams are a completely different thing. Streams are Monads, thus playing a big part in bringing functional programming to Java:

In functional programming, a monad is a structure that represents computations defined as sequences of steps. A type with a monad structure defines what it means to chain operations, or nest functions of that type together.

This guide teaches you how to work with Java 8 streams and how to use the different kind of available stream operations. You'll learn about the processing order and how the ordering of stream operations affect runtime performance. The more powerful stream operations reduce,collect and flatMap are covered in detail. The tutorial ends with an in-depth look at parallel streams.

If you're not yet familiar with Java 8 lambda expressions, functional interfaces and method references, you probably want to read my Java 8 Tutorial first before starting with this tutorial.

UPDATE - I'm currently working on a JavaScript implementation of the Java 8 Streams API for the browser. If I've drawn your interest check out Stream.js on GitHub. Your Feedback is highly appreciated.

How streams work

A stream represents a sequence of elements and supports different kind of operations to perform computations upon those elements:

List<String> myList =
Arrays.asList("a1", "a2", "b1", "c2", "c1"); myList
.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println); // C1
// C2

Stream operations are either intermediate or terminal. Intermediate operations return a stream so we can chain multiple intermediate operations without using semicolons. Terminal operations are either void or return a non-stream result. In the above example filtermapand sorted are intermediate operations whereas forEach is a terminal operation. For a full list of all available stream operations see the Stream Javadoc. Such a chain of stream operations as seen in the example above is also known as operation pipeline.

Most stream operations accept some kind of lambda expression parameter, a functional interface specifying the exact behavior of the operation. Most of those operations must be bothnon-interfering and stateless. What does that mean?

A function is non-interfering when it does not modify the underlying data source of the stream, e.g. in the above example no lambda expression does modify myList by adding or removing elements from the collection.

A function is stateless when the execution of the operation is deterministic, e.g. in the above example no lambda expression depends on any mutable variables or states from the outer scope which might change during execution.

Different kind of streams

Streams can be created from various data sources, especially collections. Lists and Sets support new methods stream() and parallelStream() to either create a sequential or a parallel stream. Parallel streams are capable of operating on multiple threads and will be covered in a later section of this tutorial. We focus on sequential streams for now:

Arrays.asList("a1", "a2", "a3")
.stream()
.findFirst()
.ifPresent(System.out::println); // a1

Calling the method stream() on a list of objects returns a regular object stream. But we don't have to create collections in order to work with streams as we see in the next code sample:

Stream.of("a1", "a2", "a3")
.findFirst()
.ifPresent(System.out::println); // a1

Just use Stream.of() to create a stream from a bunch of object references.

Besides regular object streams Java 8 ships with special kinds of streams for working with the primitive data types intlong and double. As you might have guessed it's IntStream,LongStream and DoubleStream.

IntStreams can replace the regular for-loop utilizing IntStream.range():

IntStream.range(1, 4)
.forEach(System.out::println); // 1
// 2
// 3

All those primitive streams work just like regular object streams with the following differences: Primitive streams use specialized lambda expressions, e.g. IntFunction instead ofFunction or IntPredicate instead of Predicate. And primitive streams support the additional terminal aggregate operations sum() and average():

Arrays.stream(new int[] {1, 2, 3})
.map(n -> 2 * n + 1)
.average()
.ifPresent(System.out::println); // 5.0

Sometimes it's useful to transform a regular object stream to a primitive stream or vice versa. For that purpose object streams support the special mapping operations mapToInt(),mapToLong() and mapToDouble:

Stream.of("a1", "a2", "a3")
.map(s -> s.substring(1))
.mapToInt(Integer::parseInt)
.max()
.ifPresent(System.out::println); // 3

Primitive streams can be transformed to object streams via mapToObj():

IntStream.range(1, 4)
.mapToObj(i -> "a" + i)
.forEach(System.out::println); // a1
// a2
// a3

Here's a combined example: the stream of doubles is first mapped to an int stream and than mapped to an object stream of strings:

Stream.of(1.0, 2.0, 3.0)
.mapToInt(Double::intValue)
.mapToObj(i -> "a" + i)
.forEach(System.out::println); // a1
// a2
// a3

Processing Order

Now that we've learned how to create and work with different kinds of streams, let's dive deeper into how stream operations are processed under the hood.

An important characteristic of intermediate operations is laziness. Look at this sample where a terminal operation is missing:

Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return true;
});

When executing this code snippet, nothing is printed to the console. That is because intermediate operations will only be executed when a terminal operation is present.

Let's extend the above example by the terminal operation forEach:

Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return true;
})
.forEach(s -> System.out.println("forEach: " + s));

Executing this code snippet results in the desired output on the console:

filter:  d2
forEach: d2
filter: a2
forEach: a2
filter: b1
forEach: b1
filter: b3
forEach: b3
filter: c
forEach: c

The order of the result might be surprising. A naive approach would be to execute the operations horizontally one after another on all elements of the stream. But instead each element moves along the chain vertically. The first string "d2" passes filter then forEach, only then the second string "a2" is processed.

This behavior can reduce the actual number of operations performed on each element, as we see in the next example:

Stream.of("d2", "a2", "b1", "b3", "c")
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.anyMatch(s -> {
System.out.println("anyMatch: " + s);
return s.startsWith("A");
}); // map: d2
// anyMatch: D2
// map: a2
// anyMatch: A2

The operation anyMatch returns true as soon as the predicate applies to the given input element. This is true for the second element passed "A2". Due to the vertical execution of the stream chain, map has only to be executed twice in this case. So instead of mapping all elements of the stream, map will be called as few as possible.

Why order matters

The next example consists of two intermediate operations map and filter and the terminal operation forEach. Let's once again inspect how those operations are being executed:

Stream.of("d2", "a2", "b1", "b3", "c")
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("A");
})
.forEach(s -> System.out.println("forEach: " + s)); // map: d2
// filter: D2
// map: a2
// filter: A2
// forEach: A2
// map: b1
// filter: B1
// map: b3
// filter: B3
// map: c
// filter: C

As you might have guessed both map and filter are called five times for every string in the underlying collection whereas forEach is only called once.

We can greatly reduce the actual number of executions if we change the order of the operations, moving filter to the beginning of the chain:

Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s)); // filter: d2
// filter: a2
// map: a2
// forEach: A2
// filter: b1
// filter: b3
// filter: c

Now, map is only called once so the operation pipeline performs much faster for larger numbers of input elements. Keep that in mind when composing complex method chains.

Let's extend the above example by an additional operation, sorted:

Stream.of("d2", "a2", "b1", "b3", "c")
.sorted((s1, s2) -> {
System.out.printf("sort: %s; %s\n", s1, s2);
return s1.compareTo(s2);
})
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s));

Sorting is a special kind of intermediate operation. It's a so called stateful operation since in order to sort a collection of elements you have to maintain state during ordering.

Executing this example results in the following console output:

sort:    a2; d2
sort: b1; a2
sort: b1; d2
sort: b1; a2
sort: b3; b1
sort: b3; d2
sort: c; b3
sort: c; d2
filter: a2
map: a2
forEach: A2
filter: b1
filter: b3
filter: c
filter: d2

First, the sort operation is executed on the entire input collection. In other words sorted is executed horizontally. So in this case sorted is called eight times for multiple combinations on every element in the input collection.

Once again we can optimize the performance by reordering the chain:

Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.sorted((s1, s2) -> {
System.out.printf("sort: %s; %s\n", s1, s2);
return s1.compareTo(s2);
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s)); // filter: d2
// filter: a2
// filter: b1
// filter: b3
// filter: c
// map: a2
// forEach: A2

In this example sorted is never been called because filter reduces the input collection to just one element. So the performance is greatly increased for larger input collections.

Reusing Streams

Java 8 streams cannot be reused. As soon as you call any terminal operation the stream is closed:

Stream<String> stream =
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a")); stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception

Calling noneMatch after anyMatch on the same stream results in the following exception:

java.lang.IllegalStateException: stream has already been operated upon or closed
at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:229)
at java.util.stream.ReferencePipeline.noneMatch(ReferencePipeline.java:459)
at com.winterbe.java8.Streams5.test7(Streams5.java:38)
at com.winterbe.java8.Streams5.main(Streams5.java:28)

To overcome this limitation we have to to create a new stream chain for every terminal operation we want to execute, e.g. we could create a stream supplier to construct a new stream with all intermediate operations already set up:

Supplier<Stream<String>> streamSupplier =
() -> Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a")); streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok

Each call to get() constructs a new stream on which we are save to call the desired terminal operation.

Advanced Operations

Streams support plenty of different operations. We've already learned about the most important operations like filter or map. I leave it up to you to discover all other available operations (see Stream Javadoc). Instead let's dive deeper into the more complex operationscollectflatMap and reduce.

Most code samples from this section use the following list of persons for demonstration purposes:

class Person {
String name;
int age; Person(String name, int age) {
this.name = name;
this.age = age;
} @Override
public String toString() {
return name;
}
} List<Person> persons =
Arrays.asList(
new Person("Max", 18),
new Person("Peter", 23),
new Person("Pamela", 23),
new Person("David", 12));

Collect

Collect is an extremely useful terminal operation to transform the elements of the stream into a different kind of result, e.g. a ListSet or Map. Collect accepts a Collector which consists of four different operations: a supplier, an accumulator, a combiner and a finisher. This sounds super complicated at first, but the good part is Java 8 supports various built-in collectors via the Collectors class. So for the most common operations you don't have to implement a collector yourself.

Let's start with a very common usecase:

List<Person> filtered =
persons
.stream()
.filter(p -> p.name.startsWith("P"))
.collect(Collectors.toList()); System.out.println(filtered); // [Peter, Pamela]

As you can see it's very simple to construct a list from the elements of a stream. Need a set instead of list - just use Collectors.toSet().

The next example groups all persons by age:

Map<Integer, List<Person>> personsByAge = persons
.stream()
.collect(Collectors.groupingBy(p -> p.age)); personsByAge
.forEach((age, p) -> System.out.format("age %s: %s\n", age, p)); // age 18: [Max]
// age 23: [Peter, Pamela]
// age 12: [David]

Collectors are extremely versatile. You can also create aggregations on the elements of the stream, e.g. determining the average age of all persons:

Double averageAge = persons
.stream()
.collect(Collectors.averagingInt(p -> p.age)); System.out.println(averageAge); // 19.0

If you're interested in more comprehensive statistics, the summarizing collectors return a special built-in summary statistics object. So we can simply determine minmax and arithmeticaverage age of the persons as well as the sum and count.

IntSummaryStatistics ageSummary =
persons
.stream()
.collect(Collectors.summarizingInt(p -> p.age)); System.out.println(ageSummary);
// IntSummaryStatistics{count=4, sum=76, min=12, average=19.000000, max=23}

The next example joins all persons into a single string:

String phrase = persons
.stream()
.filter(p -> p.age >= 18)
.map(p -> p.name)
.collect(Collectors.joining(" and ", "In Germany ", " are of legal age.")); System.out.println(phrase);
// In Germany Max and Peter and Pamela are of legal age.

The join collector accepts a delimiter as well as an optional prefix and suffix.

In order to transform the stream elements into a map, we have to specify how both the keys and the values should be mapped. Keep in mind that the mapped keys must be unique, otherwise an IllegalStateException is thrown. You can optionally pass a merge function as an additional parameter to bypass the exception:

Map<Integer, String> map = persons
.stream()
.collect(Collectors.toMap(
p -> p.age,
p -> p.name,
(name1, name2) -> name1 + ";" + name2)); System.out.println(map);
// {18=Max, 23=Peter;Pamela, 12=David}

Now that we know some of the most powerful built-in collectors, let's try to build our own special collector. We want to transform all persons of the stream into a single string consisting of all names in upper letters separated by the | pipe character. In order to achieve this we create a new collector via Collector.of(). We have to pass the four ingredients of a collector: a supplier, an accumulator, a combiner and a finisher.

Collector<Person, StringJoiner, String> personNameCollector =
Collector.of(
() -> new StringJoiner(" | "), // supplier
(j, p) -> j.add(p.name.toUpperCase()), // accumulator
(j1, j2) -> j1.merge(j2), // combiner
StringJoiner::toString); // finisher String names = persons
.stream()
.collect(personNameCollector); System.out.println(names); // MAX | PETER | PAMELA | DAVID

Since strings in Java are immutable, we need a helper class like StringJoiner to let the collector construct our string. The supplier initially constructs such a StringJoiner with the appropriate delimiter. The accumulator is used to add each persons upper-cased name to the StringJoiner. The combiner knows how to merge two StringJoiners into one. In the last step the finisher constructs the desired String from the StringJoiner.

FlatMap

We've already learned how to transform the objects of a stream into another type of objects by utilizing the map operation. Map is kinda limited because every object can only be mapped to exactly one other object. But what if we want to transform one object into multiple others or none at all? This is where flatMap comes to the rescue.

FlatMap transforms each element of the stream into a stream of other objects. So each object will be transformed into zero, one or multiple other objects backed by streams. The contents of those streams will then be placed into the returned stream of the flatMap operation.

Before we see flatMap in action we need an appropriate type hierarchy:

class Foo {
String name;
List<Bar> bars = new ArrayList<>(); Foo(String name) {
this.name = name;
}
} class Bar {
String name; Bar(String name) {
this.name = name;
}
}

Next, we utilize our knowledge about streams to instantiate a couple of objects:

List<Foo> foos = new ArrayList<>();

// create foos
IntStream
.range(1, 4)
.forEach(i -> foos.add(new Foo("Foo" + i))); // create bars
foos.forEach(f ->
IntStream
.range(1, 4)
.forEach(i -> f.bars.add(new Bar("Bar" + i + " <- " + f.name))));

Now we have a list of three foos each consisting of three bars.

FlatMap accepts a function which has to return a stream of objects. So in order to resolve the bar objects of each foo, we just pass the appropriate function:

foos.stream()
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name)); // Bar1 <- Foo1
// Bar2 <- Foo1
// Bar3 <- Foo1
// Bar1 <- Foo2
// Bar2 <- Foo2
// Bar3 <- Foo2
// Bar1 <- Foo3
// Bar2 <- Foo3
// Bar3 <- Foo3

As you can see, we've successfully transformed the stream of three foo objects into a stream of nine bar objects.

Finally, the above code example can be simplified into a single pipeline of stream operations:

IntStream.range(1, 4)
.mapToObj(i -> new Foo("Foo" + i))
.peek(f -> IntStream.range(1, 4)
.mapToObj(i -> new Bar("Bar" + i + " <- " f.name))
.forEach(f.bars::add))
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));

FlatMap is also available for the Optional class introduced in Java 8. Optionals flatMapoperation returns an optional object of another type. So it can be utilized to prevent nastynull checks.

Think of a highly hierarchical structure like this:

class Outer {
Nested nested;
} class Nested {
Inner inner;
} class Inner {
String foo;
}

In order to resolve the inner string foo of an outer instance you have to add multiple null checks to prevent possible NullPointerExceptions:

Outer outer = new Outer();
if (outer != null && outer.nested != null && outer.nested.inner != null) {
System.out.println(outer.nested.inner.foo);
}

The same behavior can be obtained by utilizing optionals flatMap operation:

Optional.of(new Outer())
.flatMap(o -> Optional.ofNullable(o.nested))
.flatMap(n -> Optional.ofNullable(n.inner))
.flatMap(i -> Optional.ofNullable(i.foo))
.ifPresent(System.out::println);

Each call to flatMap returns an Optional wrapping the desired object if present or null if absent.

Reduce

The reduction operation combines all elements of the stream into a single result. Java 8 supports three different kind of reduce methods. The first one reduces a stream of elements to exactly one element of the stream. Let's see how we can use this method to determine the oldest person:

persons
.stream()
.reduce((p1, p2) -> p1.age > p2.age ? p1 : p2)
.ifPresent(System.out::println); // Pamela

The reduce method accepts a BinaryOperator accumulator function. That's actually aBiFunction where both operands share the same type, in that case Person. BiFunctions are like Function but accept two arguments. The example function compares both persons ages in order to return the person with the maximum age.

The second reduce method accepts both an identity value and a BinaryOperatoraccumulator. This method can be utilized to construct a new Person with the aggregated names and ages from all other persons in the stream:

Person result =
persons
.stream()
.reduce(new Person("", 0), (p1, p2) -> {
p1.age += p2.age;
p1.name += p2.name;
return p1;
}); System.out.format("name=%s; age=%s", result.name, result.age);
// name=MaxPeterPamelaDavid; age=76

The third reduce method accepts three parameters: an identity value, a BiFunctionaccumulator and a combiner function of type BinaryOperator. Since the identity values type is not restricted to the Person type, we can utilize this reduction to determine the sum of ages from all persons:

Integer ageSum = persons
.stream()
.reduce(0, (sum, p) -> sum += p.age, (sum1, sum2) -> sum1 + sum2); System.out.println(ageSum); // 76

As you can see the result is 76, but what's happening exactly under the hood? Let's extend the above code by some debug output:

Integer ageSum = persons
.stream()
.reduce(0,
(sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s\n", sum, p);
return sum += p.age;
},
(sum1, sum2) -> {
System.out.format("combiner: sum1=%s; sum2=%s\n", sum1, sum2);
return sum1 + sum2;
}); // accumulator: sum=0; person=Max
// accumulator: sum=18; person=Peter
// accumulator: sum=41; person=Pamela
// accumulator: sum=64; person=David

As you can see the accumulator function does all the work. It first get called with the initial identity value 0 and the first person Max. In the next three steps sum continually increases by the age of the last steps person up to a total age of 76.

Wait wat? The combiner never gets called? Executing the same stream in parallel will lift the secret:

Integer ageSum = persons
.parallelStream()
.reduce(0,
(sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s\n", sum, p);
return sum += p.age;
},
(sum1, sum2) -> {
System.out.format("combiner: sum1=%s; sum2=%s\n", sum1, sum2);
return sum1 + sum2;
}); // accumulator: sum=0; person=Pamela
// accumulator: sum=0; person=David
// accumulator: sum=0; person=Max
// accumulator: sum=0; person=Peter
// combiner: sum1=18; sum2=23
// combiner: sum1=23; sum2=12
// combiner: sum1=41; sum2=35

Executing this stream in parallel results in an entirely different execution behavior. Now the combiner is actually called. Since the accumulator is called in parallel, the combiner is needed to sum up the separate accumulated values.

Let's dive deeper into parallel streams in the next chapter.

Parallel Streams

Streams can be executed in parallel to increase runtime performance on large amount of input elements. Parallel streams use a common ForkJoinPool available via the staticForkJoinPool.commonPool() method. The size of the underlying thread-pool uses up to five threads - depending on the amount of available physical CPU cores:

ForkJoinPool commonPool = ForkJoinPool.commonPool();
System.out.println(commonPool.getParallelism()); // 3

On my machine the common pool is initialized with a parallelism of 3 per default. This value can be decreased or increased by setting the following JVM parameter:

-Djava.util.concurrent.ForkJoinPool.common.parallelism=5

Collections support the method parallelStream() to create a parallel stream of elements. Alternatively you can call the intermediate method parallel() on a given stream to convert a sequential stream to a parallel counterpart.

In order to understate the parallel execution behavior of a parallel stream the next example prints information about the current thread to sout:

Arrays.asList("a1", "a2", "b1", "c2", "c1")
.parallelStream()
.filter(s -> {
System.out.format("filter: %s [%s]\n",
s, Thread.currentThread().getName());
return true;
})
.map(s -> {
System.out.format("map: %s [%s]\n",
s, Thread.currentThread().getName());
return s.toUpperCase();
})
.forEach(s -> System.out.format("forEach: %s [%s]\n",
s, Thread.currentThread().getName()));

By investigating the debug output we should get a better understanding which threads are actually used to execute the stream operations:

filter:  b1 [main]
filter: a2 [ForkJoinPool.commonPool-worker-1]
map: a2 [ForkJoinPool.commonPool-worker-1]
filter: c2 [ForkJoinPool.commonPool-worker-3]
map: c2 [ForkJoinPool.commonPool-worker-3]
filter: c1 [ForkJoinPool.commonPool-worker-2]
map: c1 [ForkJoinPool.commonPool-worker-2]
forEach: C2 [ForkJoinPool.commonPool-worker-3]
forEach: A2 [ForkJoinPool.commonPool-worker-1]
map: b1 [main]
forEach: B1 [main]
filter: a1 [ForkJoinPool.commonPool-worker-3]
map: a1 [ForkJoinPool.commonPool-worker-3]
forEach: A1 [ForkJoinPool.commonPool-worker-3]
forEach: C1 [ForkJoinPool.commonPool-worker-2]

As you can see the parallel stream utilizes all available threads from the commonForkJoinPool for executing the stream operations. The output may differ in consecutive runs because the behavior which particular thread is actually used is non-deterministic.

Let's extend the example by an additional stream operation, sort:

Arrays.asList("a1", "a2", "b1", "c2", "c1")
.parallelStream()
.filter(s -> {
System.out.format("filter: %s [%s]\n",
s, Thread.currentThread().getName());
return true;
})
.map(s -> {
System.out.format("map: %s [%s]\n",
s, Thread.currentThread().getName());
return s.toUpperCase();
})
.sorted((s1, s2) -> {
System.out.format("sort: %s <> %s [%s]\n",
s1, s2, Thread.currentThread().getName());
return s1.compareTo(s2);
})
.forEach(s -> System.out.format("forEach: %s [%s]\n",
s, Thread.currentThread().getName()));

The result may look strange at first:

filter:  c2 [ForkJoinPool.commonPool-worker-3]
filter: c1 [ForkJoinPool.commonPool-worker-2]
map: c1 [ForkJoinPool.commonPool-worker-2]
filter: a2 [ForkJoinPool.commonPool-worker-1]
map: a2 [ForkJoinPool.commonPool-worker-1]
filter: b1 [main]
map: b1 [main]
filter: a1 [ForkJoinPool.commonPool-worker-2]
map: a1 [ForkJoinPool.commonPool-worker-2]
map: c2 [ForkJoinPool.commonPool-worker-3]
sort: A2 <> A1 [main]
sort: B1 <> A2 [main]
sort: C2 <> B1 [main]
sort: C1 <> C2 [main]
sort: C1 <> B1 [main]
sort: C1 <> C2 [main]
forEach: A1 [ForkJoinPool.commonPool-worker-1]
forEach: C2 [ForkJoinPool.commonPool-worker-3]
forEach: B1 [main]
forEach: A2 [ForkJoinPool.commonPool-worker-2]
forEach: C1 [ForkJoinPool.commonPool-worker-1]

It seems that sort is executed sequentially on the main thread only. Actually, sort on a parallel stream uses the new Java 8 method Arrays.parallelSort() under the hood. As stated in Javadoc this method decides on the length of the array if sorting will be performed sequentially or in parallel:

If the length of the specified array is less than the minimum granularity, then it is sorted using the appropriate Arrays.sort method.

Coming back to the reduce example from the last section. We already found out that the combiner function is only called in parallel but not in sequential streams. Let's see which threads are actually involved:

List<Person> persons = Arrays.asList(
new Person("Max", 18),
new Person("Peter", 23),
new Person("Pamela", 23),
new Person("David", 12)); persons
.parallelStream()
.reduce(0,
(sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s [%s]\n",
sum, p, Thread.currentThread().getName());
return sum += p.age;
},
(sum1, sum2) -> {
System.out.format("combiner: sum1=%s; sum2=%s [%s]\n",
sum1, sum2, Thread.currentThread().getName());
return sum1 + sum2;
});

The console output reveals that both the accumulator and the combiner functions are executed in parallel on all available threads:

accumulator: sum=0; person=Pamela; [main]
accumulator: sum=0; person=Max; [ForkJoinPool.commonPool-worker-3]
accumulator: sum=0; person=David; [ForkJoinPool.commonPool-worker-2]
accumulator: sum=0; person=Peter; [ForkJoinPool.commonPool-worker-1]
combiner: sum1=18; sum2=23; [ForkJoinPool.commonPool-worker-1]
combiner: sum1=23; sum2=12; [ForkJoinPool.commonPool-worker-2]
combiner: sum1=41; sum2=35; [ForkJoinPool.commonPool-worker-2]

In summary, it can be stated that parallel streams can bring be a nice performance boost to streams with a large amount of input elements. But keep in mind that some parallel stream operations like reduce and collect need additional computations (combine operations) which isn't needed when executed sequentially.

Furthermore we've learned that all parallel stream operations share the same JVM-wide common ForkJoinPool. So you probably want to avoid implementing slow blocking stream operations since that could potentially slow down other parts of your application which rely heavily on parallel streams.

That's it

My programming guide to Java 8 streams ends here. If you're interested in learning more about Java 8 streams, I recommend to you the Stream Javadoc package documentation. If you want to learn more about the underlying mechanisms, you probably want to read Martin Fowlers article about Collection Pipelines.

If you're interested in JavaScript as well, you may want to have a look at Stream.js - a JavaScript implementation of the Java 8 Streams API. You may also wanna read my Java 8 Tutorial and my Java 8 Nashorn Tutorial.

Hopefully this tutorial was helpful to you and you've enjoyed reading it. The full source code of the tutorial samples is hosted on GitHub. Feel free to fork the repository or send me your feedback via Twitter.

Happy coding!

Java 8 Stream Tutorial--转的更多相关文章

  1. Java 8 Stream 教程

    Java 8 Stream Tutorial 本文采用实例驱动的方式,对JAVA8的stream API进行一个深入的介绍.虽然JAVA8中的stream API与JAVA I/O中的InputStr ...

  2. Java 8 Stream API Example Tutorial

    Stream API Overview Before we look into Java 8 Stream API Examples, let’s see why it was required. S ...

  3. Java 8 Stream API详解--转

    原文地址:http://blog.csdn.net/chszs/article/details/47038607 Java 8 Stream API详解 一.Stream API介绍 Java8引入了 ...

  4. java之stream(jdk8)

    一.stream介绍 参考: Java 8 中的 Streams API 详解   Package java.util.stream   Java8初体验(二)Stream语法详解   二.例子 im ...

  5. Java笔记:Java 流(Stream)、文件(File)和IO

    更新时间:2018-1-7 12:27:21 更多请查看在线文集:http://android.52fhy.com/java/index.html java.io 包几乎包含了所有操作输入.输出需要的 ...

  6. Java 8 Stream

    1.关于Java8部分新特性介绍 Java8的新特性很多,在此就不一一介绍了,这里只说一下我自己在工作用用得比较多的几点: 1.1.Lambda表达式 Lambda允许把函数作为一个方法的参数(函数作 ...

  7. [零]java8 函数式编程入门官方文档中文版 java.util.stream 中文版 流处理的相关概念

    前言 本文为java.util.stream 包文档的译文 极其个别部分可能为了更好理解,陈述略有改动,与原文几乎一致 原文可参考在线API文档 https://docs.oracle.com/jav ...

  8. java 11 Stream 加强

    Stream 是 Java 8 中的新特性,Java 9 开始对 Stream 增加了以下 4 个新方法. 1) 增加单个参数构造方法,可为null Stream.ofNullable(null).c ...

  9. Java 8 新特性-菜鸟教程 (5) -Java 8 Stream

    Java 8 Stream Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据. Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种 ...

随机推荐

  1. POJ——T 1470 Closest Common Ancestors

    http://poj.org/problem?id=1470 Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 20830   ...

  2. Java中四种引用的区分

    强引用(StrongReference) 强引用就是指在程序代码之中普遍存在的,比如下面这段代码中的object和str都是强引用: 1 2 Object object = new Object(); ...

  3. ArcGIS api for javascript——鼠标悬停时显示信息窗口

    描述 本例展示当用户在要素上悬停鼠标时如何显示InfoWindow.本例中,要素是查询USA州图层的QueryTask的查询结果.工作流程如下: 1.用户单击一个要素 2.要素是“加亮的”图形. 3. ...

  4. 特定位取反(js实现)

    去华为面试的时候.没有做好准备工作.面试的流程没有问清也没有查,结果一过去就让上机做题,着实有点措手不及.笔者是擅长前端的Java Webproject师啊,主要的底层编程知识早已生疏了.机试题碰到了 ...

  5. 学password学一定得学程序

    题目描写叙述 以前.ZYJ同学非常喜欢password学.有一天,他发现了一个非常长非常长的字符串S1.他非常好奇那代表着什么,于是奇妙的WL给了他还有一个字符串S2.可是非常不幸的是,WL忘记跟他说 ...

  6. 换主页轮播的主题图片(4、删除)---轻开电子商务系统(企业入门级B2C站点)

    接(  换主页轮播的主题图片1 ) 文件:site/links/img0.html中的表单(第11行最后一个td) <td><if x="@{sys:canDo}" ...

  7. vue17 $watch 监听数据变化

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Sql Server新手学习入门

    Sql Server新手学习入门 http://www.tudou.com/home/_117459337

  9. vue 实现文本域还剩多少字符

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. Netty In Action中文版 - 第七章:编解码器Codec

    http://blog.csdn.net/abc_key/article/details/38041143 本章介绍 Codec,编解码器 Decoder,解码器 Encoder,编码器 Netty提 ...