**链接:****传送门 **

题意:求 N 的拆分数

思路:

  • 吐嘈:****求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 , 4 = 1 + 1 + 2 , 4 = 1 + 2 + 1 , 4 = 2 + 1 + 1 , 4 = 1 + 1 + 1 + 1,共 8 种,你没有看错,这跟普通概念上的拆分数有很大的不同,拆分数不考虑顺序,即 4 = 1 + 3 与 4 = 3 + 1 是相同的,及其坑爹,所以可以发现 N 的拆分数其实是 2^(n-1)

  • 由于 n 的范围大的可怕,直接快速幂是G了,这时候神奇的数学就起了很大的作用!不得不说数学真是美妙!真不愧是科学的基石!根据费马小定理( p 是素数 , 且 gcd( p , a ) = 1 ,则有 a^(p-1) % p = 1 )可知,MOD = 1e9 + 7 是素数,所以我们可以降幂!可以将 2 ^ n 降解为 2 ^ ( n % (MOD - 1) ),然后快速幂跑一下就 ok 了


/*************************************************************************
> File Name: hdu4704.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月22日 星期一 16时55分59秒
************************************************************************/ #include<bits/stdc++.h>
using namespace std; #define ll long long
#define mod(x) ((x)%MOD)
const int MAX_N = 100010;
const int MOD = 1e9+7; ll Trans(char* s,int mod){
ll sum = 0; int len = strlen(s);
for(int i = 0 ; i < len ; i++){
sum = ( sum*10 + s[i]- '0' ) % mod;
}
return sum;
}
ll quick_pow(ll a,ll x){
ll ret = 1;
while(x){
if(x&1) ret = ret * a % MOD;
a = a * a % MOD;
x >>= 1;
}
return ret;
}
int main(){
char s[MAX_N];
while(~scanf("%s",s)){
ll n = Trans(s,MOD-1);
ll ans = quick_pow(2,n-1);
printf("%lld\n",ans);
}
return 0;
}

HDU 4704 Sum( 费马小定理 + 快速幂 )的更多相关文章

  1. hdu 4704 Sum 费马小定理

    题目链接 求2^n%mod的值, n<=10^100000. 费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p)  然后可以推出来a^k % p = a^(k%(p-1) ...

  2. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  3. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  4. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  5. hdu 4704(费马小定理+快速幂取模)

    Sum                                                                                Time Limit: 2000/ ...

  6. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  7. hdu_4869(费马小定理+快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...

  8. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  9. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

随机推荐

  1. javap命令

    javap命令 学习了:https://www.cnblogs.com/frinder6/p/5440173.html javap命令查看java类的字节码: 对于synchronized块,可以显示 ...

  2. Android之——自己主动挂断电话的实现

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/47072451 通过<Android之--AIDL小结>与<And ...

  3. 面向基于英特尔&#174; 架构的 Android* 的 CoCos2D

    Cocos2D 是一款游戏引擎,可与从电脑到手机等多种设备配合使用. 该引擎支持丰富的特性,可帮助创建出色的 2D 游戏.它甚至包含具备全面功能的物理引擎. CoCos2D 的核心元素是基本动画元素( ...

  4. WinForm使用CefSharp内嵌chrome浏览器

    先贴运行图:亲测可用!以图为证! 开始!1.创建winform程序,使用.NET 4.5.2或以上(vs2010最高支持.NET 4.0,我使用的是vs2017).这一步容易忽略,简单的说就是将项目. ...

  5. iOS 8 UI布局 AutoLayout及SizeClass(二)

    一.新特性Size Class介绍 随着iOS8系统的公布,一个全新的页面UI布局概念出现,这个新特性将颠覆包含iOS7及之前版本号的UI布局方式,这个新特性就是Size Class. Size Cl ...

  6. 安卓离线SDK Windows版 资源包下载地址全集

    1.Tools    https://dl-ssl.google.com/android/repository/platform-tools_r19.0.1-windows.zip https://d ...

  7. c16---字符串

    // // main.c // 字符串的基本概念,字符串和字符数组的共用的char[], #include <stdio.h> int main(int argc, const char ...

  8. ijkplayer视频播放

      http://android-doc.com/androiddocs/2017/1018/5416.html https://www.2cto.com/kf/201801/714366.html ...

  9. svn代码回滚命令【转】

    本文转载自:http://www.cnblogs.com/jndream/archive/2012/03/20/2407955.html 取消对代码的修改分为两种情况:   第一种情况:改动没有被提交 ...

  10. Android进程与线程

    我们都知道,在操作系统中进程是OS分配资源的最小单位,而线程是执行任务的最小单位.一个进程可以拥有多个线程执行任务,这些线程可以共享该进程分配到的资源.当我们的app启动运行后,在该app没有其他组件 ...