Anatomy of a MapReduce Job

In MapReduce, a YARN application is called a Job. The implementation of the Application Master provided by the MapReduce
framework is called MRAppMaster.

Timeline of a
MapReduce Job

This
is the timeline of a MapReduce Job execution:

  • Map Phase: several Map Tasks are executed
  • Reduce Phase: several Reduce Tasks are executed

Notice that the Reduce Phase may start before the end of Map Phase. Hence, an interleaving between them is possible.

Map Phase

We now focus our discussion on the Map Phase. A key decision is how many MapTasks the Application Master needs to start for the current job.

What does the user
give us?

Let’s take a step back. When a client submits an application, several kinds of information are provided to the YARN infrastucture. In particular:

  • a configuration: this may be partial (some parameters are not specified by the user) and in this case the default values are used for the job. Notice that these default values may be the ones chosen by a Hadoop provider
    like Amanzon.
  • a JAR containing:
    • map() implementation
    • a combiner implementation
    • reduce() implementation
  • input and output information:
    • input directory: is the input directory on HDFS? On S3? How many files?
    • output directory: where will we store the output? On HDFS? On S3?

The number of files inside the input directory is used for deciding the number of Map Tasks of a job.

How many Map Tasks?

The Application Master will launch one MapTask for each map split. Typically, there is a map split for each input file. If the input file is too big (bigger than the HDFS block size) then
we have two or more map splits associated to the same input file. This is the pseudocode used inside the method getSplits() of
the FileInputFormat class:

num_splits = 0
for each input file f:
remaining = f.length
while remaining / split_size > split_slope:
num_splits += 1
remaining -= split_size

where:

split_slope = 1.1
split_size =~ dfs.blocksize

Notice that the configuration parameter mapreduce.job.maps is
ignored in MRv2 (in the past it was just an hint).

MapTask Launch

The MapReduce Application Master asks to the Resource Manager for Containers needed by the Job: one MapTask container request for each MapTask (map split).

A container request for a MapTask tries to exploit data locality of the map split. The Application Master asks for:

  • a container located on the same Node Manager where the map split is stored (a map split may be stored on multiple nodes due to the HDFS replication factor);
  • otherwise, a container located on a Node Manager in the same rack where the the map split is stored;
  • otherwise, a container on any other Node Manager of the cluster

This is just an hint to the Resource Scheduler. The Resource Scheduler is free to ignore data locality if the suggested assignment is in conflict with the Resouce Scheduler’s goal.

When a Container is assigned to the Application Master, the MapTask is launched.

Map
Phase: example of an execution scenario

This is a possible execution scenario of the Map Phase:

  • there are two Node Managers: each Node Manager has 2GB of RAM (NM capacity) and each MapTask requires 1GB, we can run in parallel 2 containers on each Node Manager (this is the best scenario, the Resource Scheduler may decide
    differently)
  • there are no other YARN applications running in the cluster
  • our job has 8 map splits (e.g., there are 7 files inside the input directory, but only one of them is bigger than the HDFS block size so we split it into 2 map splits): we need to run 8 Map Tasks.

Map Task Execution
Timeline

Let’s
now focus on a single Map Task. This is the Map Task execution timeline:

  • INIT phase: we setup the Map Task
  • EXECUTION phase: for each (key, value) tuple inside the map split we run the map() function
  • SPILLING phase: the map output is stored in an in-memory buffer; when this buffer is almost full then we start
    (in parallel) the spilling phase in order to remove data from it
  • SHUFFLE phase: at the end of the spilling phase, we merge all the map outputs and package them for the reduce phase

MapTask: INIT

During the INIT phase, we:

  1. create a context (TaskAttemptContext.class)
  2. create an instance of the user Mapper.class
  3. setup the input (e.g., InputFormat.classInputSplit.classRecordReader.class)
  4. setup the output (NewOutputCollector.class)
  5. create a mapper context (MapContext.classMapper.Context.class)
  6. initialize the input, e.g.:
  7. create a SplitLineReader.class object
  8. create a HdfsDataInputStream.class object

MapTask: EXECUTION

The EXECUTION phase is performed by the run method
of the Mapper class. The user can override it, but by default it will start by calling the setup method:
this function by default does not do anything useful but can be override by the user in order to setup the Task (e.g., initialize class variables). After the setup, for each <key, value> tuple contained in the map split, the map() is
invoked. Therefore, map() receives: a key a value, and a mapper context. Using the context, a map stores
its output to a buffer.

Notice that the map split is fetched chuck by chunk (e.g., 64KB) and each chunk is split in several (key, value) tuples (e.g., using SplitLineReader.class).
This is done inside the Mapper.Context.nextKeyValue method.

When the map split has been completely processed, the run function
calls the clean method: by default, no action is performed but the user may decide to override
it.

MapTask: SPILLING

As seen in the EXECUTING phase, the map will
write (using Mapper.Context.write()) its output into a circular in-memory buffer (MapTask.MapOutputBuffer).
The size of this buffer is fixed and determined by the configuration parameter mapreduce.task.io.sort.mb (default:
100MB).

Whenever this circular buffer is almost full (mapreduce.map.
sort.spill.percent
: 80% by default), the SPILLING phase is performed (in parallel using a separate thread). Notice that if the splilling thread is too slow and the buffer is 100% full, then the map() cannot
be executed and thus it has to wait.

The SPILLING thread performs the following actions:

  1. it creates a SpillRecord and FSOutputStream (local
    filesystem)
  2. in-memory sorts the used chunk of the buffer: the output tuples are sorted by (partitionIdx, key) using a quicksort algorithm.
  3. the sorted output is split into partitions: one partition for each ReduceTask of the job (see later).
  4. Partitions are sequentially written into the local file.
How Many Reduce Tasks?

The number of ReduceTasks for the job is decided by the configuration parameter mapreduce.job.reduces.

What
is the partitionIdx associated to an output tuple?

The paritionIdx of an output tuple is the index of a partition. It is decided inside the Mapper.Context.write():

partitionIdx = (key.hashCode() & Integer.MAX_VALUE) % numReducers

It is stored as metadata in the circular buffer alongside the output tuple. The user can customize the partitioner by setting the configuration parameter mapreduce.job.partitioner.class.

When do we apply
the combiner?

If the user specifies a combiner then the SPILLING thread, before writing the tuples to the file (4), executes the combiner on the tuples contained in each partition. Basically, we:

  1. create an instance of the user Reducer.class (the one specified
    for the combiner!)
  2. create a Reducer.Context: the output will be stored on the
    local filesystem
  3. execute Reduce.run(): see Reduce Task description

The combiner typically use the same implementation of the standard reduce() function
and thus can be seen as a local reducer.

MapTask: end of EXECUTION

At the end of the EXECUTION phase, the SPILLING thread is triggered for the last time. In more detail, we:

  1. sort and spill the remaining unspilled tuples
  2. start the SHUFFLE phase

Notice that for each time the buffer was almost full, we get one spill file (SpillReciord +
output file). Each Spill file contains several partitions (segments).

MapTask: SHUFFLE

Reduce Phase

[…]

YARN and MapReduce
interaction

MapReduce&#160;图解流程的更多相关文章

  1. MapReduce的数据流程、执行流程

    MapReduce的数据流程: 预先加载本地的输入文件 经过MAP处理产生中间结果 经过shuffle程序将相同key的中间结果分发到同一节点上处理 Recude处理产生结果输出 将结果输出保存在hd ...

  2. hadoop笔记之MapReduce的运行流程

    MapReduce的运行流程 MapReduce的运行流程 基本概念: Job&Task:要完成一个作业(Job),就要分成很多个Task,Task又分为MapTask和ReduceTask ...

  3. [MapReduce_3] MapReduce 程序运行流程解析

    0. 说明 Word Count 程序运行流程解析 &&  MapReduce 程序运行流程解析 1. Word Count 程序运行流程解析 2. MapReduce 程序运行流程图

  4. Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(二)

    本文继<Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)>,接着讲述MapReduce作业在MRAppMaster上处理总流程,继上篇讲到作业初始化之后的作 ...

  5. Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)

    我们知道,如果想要在Yarn上运行MapReduce作业,仅需实现一个ApplicationMaster组件即可,而MRAppMaster正是MapReduce在Yarn上ApplicationMas ...

  6. MapReduce的工作流程

    MapReduce的工作流程 1.客户端将每个block块切片(逻辑切分),每个切片都对应一个map任务,默认一个block块对应一个切片和一个map任务,split包含的信息:分片的元数据信息,包含 ...

  7. MapReduce 图解流程超详细解答(1)-【map阶段】

    转自:http://www.open-open.com/lib/view/open1453097241308.html 在MapReduce中,一个YARN  应用被称作一个job, MapReduc ...

  8. MapReduce 图解流程超详细解答(2)-【map阶段】

    接上一篇讲解:http://blog.csdn.net/mrcharles/article/details/50465626 map任务:溢写阶段 正如我们在执行阶段看到的一样,map会使用Mappe ...

  9. MapReduce 图解流程

    Anatomy of a MapReduce Job In MapReduce, a YARN application is called a Job. The implementation of t ...

随机推荐

  1. Java中Webservice调用.NET天气接口生成客户端异常

    学习webservice时候有个例子调用公网的天气预报接口实现查询天气的功能.然而在使用命令编译客户端代码的时候出错了.大概看了一下网上说是需要将将文件中所有出现的 < s:element re ...

  2. 韦东山ARM裸机笔记(1)

    1.一个嵌入式Linux系统的软件组成:单片机大全Bootloader-->Linux驱动-->Linux APP-->Linux GUI(Android/QT) 2.驱动程序=软件 ...

  3. Jenkins学习总结(3)——Jenkins+Maven+Git搭建持续集成和自动化部署的

    前言 持续集成这个概念已经成为软件开发的主流,可以更频繁的进行测试,尽早发现问题并提示.自动化部署就更不用说了,可以加快部署速度,并可以有效减少人为操作的失误.之前一直没有把这个做起来,最近的新项目正 ...

  4. 每位iOS开发者不容错过的10大有用工具

    内容简单介绍 1.iOS简单介绍 2.iOS开发十大有用工具之开发环境 3.iOS开发十大有用工具之图标设计 4.iOS开发十大有用工具之原型设计 5.iOS开发十大有用工具之演示工具 6.iOS开发 ...

  5. nginx学习十一 nginx启动流程

    今天用了一天的时间看nginx的启动流程,流程还是非常复杂.基本的函数调用有十几个之多.通过看源代码和上网查资料,弄懂了一些函数.有些函数还在学习中,有些函数还待日后学习,这里记录一下今天所学.加油! ...

  6. golang filepath.Glob

    package main import ( "fmt" "path/filepath" ) func main() { //找出/home/ 目录下的所有的lo ...

  7. 洛谷 P1109 学生分组

    P1109 学生分组 题目描述 有N组学生,给出初始时每组中的学生个数,再给出每组学生人数的上界R和下界L(L<=R),每次你可以在某组中选出一个学生把他安排到另外一组中,问最少要多少次才可以使 ...

  8. Mining Station on the Sea (hdu 2448 SPFA+KM)

    Mining Station on the Sea Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  9. iOS Threading编程指南 官方文档翻译第一篇(序言)

    序言   Thread是能够使多个code paths 在同一个APP内并发运行的几种技术之一.虽然新的技术为并发运行提供了先进.高效的工具(例如operation 对象和GCD),但是OS X和iO ...

  10. ThinkPHP5.0---方法异常格式

    public function test(){ try{ // 获取到ThinkPHP的内置异常时,直接向上抛出,交给ThinkPHP处理 }catch (\think\Exception\HttpR ...