MapReduce 图解流程
Anatomy of a MapReduce Job
In MapReduce, a YARN application is called a Job. The implementation of the Application Master provided by the MapReduce
framework is called MRAppMaster
.
Timeline of a
MapReduce Job
This
is the timeline of a MapReduce Job execution:
- Map Phase: several Map Tasks are executed
- Reduce Phase: several Reduce Tasks are executed
Notice that the Reduce Phase may start before the end of Map Phase. Hence, an interleaving between them is possible.
Map Phase
We now focus our discussion on the Map Phase. A key decision is how many MapTasks the Application Master needs to start for the current job.
What does the user
give us?
Let’s take a step back. When a client submits an application, several kinds of information are provided to the YARN infrastucture. In particular:
- a configuration: this may be partial (some parameters are not specified by the user) and in this case the default values are used for the job. Notice that these default values may be the ones chosen by a Hadoop provider
like Amanzon. - a JAR containing:
- a
map()
implementation - a combiner implementation
- a
reduce()
implementation
- a
- input and output information:
- input directory: is the input directory on HDFS? On S3? How many files?
- output directory: where will we store the output? On HDFS? On S3?
The number of files inside the input directory is used for deciding the number of Map Tasks of a job.
How many Map Tasks?
The Application Master will launch one MapTask for each map split. Typically, there is a map split for each input file. If the input file is too big (bigger than the HDFS block size) then
we have two or more map splits associated to the same input file. This is the pseudocode used inside the method getSplits()
of
the FileInputFormat
class:
num_splits = 0
for each input file f:
remaining = f.length
while remaining / split_size > split_slope:
num_splits += 1
remaining -= split_size
where:
split_slope = 1.1
split_size =~ dfs.blocksize
Notice that the configuration parameter mapreduce.job.maps
is
ignored in MRv2 (in the past it was just an hint).
MapTask Launch
The MapReduce Application Master asks to the Resource Manager for Containers needed by the Job: one MapTask container request for each MapTask (map split).
A container request for a MapTask tries to exploit data locality of the map split. The Application Master asks for:
- a container located on the same Node Manager where the map split is stored (a map split may be stored on multiple nodes due to the HDFS replication factor);
- otherwise, a container located on a Node Manager in the same rack where the the map split is stored;
- otherwise, a container on any other Node Manager of the cluster
This is just an hint to the Resource Scheduler. The Resource Scheduler is free to ignore data locality if the suggested assignment is in conflict with the Resouce Scheduler’s goal.
When a Container is assigned to the Application Master, the MapTask is launched.
Map
Phase: example of an execution scenario
This is a possible execution scenario of the Map Phase:
- there are two Node Managers: each Node Manager has 2GB of RAM (NM capacity) and each MapTask requires 1GB, we can run in parallel 2 containers on each Node Manager (this is the best scenario, the Resource Scheduler may decide
differently) - there are no other YARN applications running in the cluster
- our job has 8 map splits (e.g., there are 7 files inside the input directory, but only one of them is bigger than the HDFS block size so we split it into 2 map splits): we need to run 8 Map Tasks.
Map Task Execution
Timeline
Let’s
now focus on a single Map Task. This is the Map Task execution timeline:
- INIT phase: we setup the Map Task
- EXECUTION phase: for each (key, value) tuple inside the map split we run the
map()
function - SPILLING phase: the map output is stored in an in-memory buffer; when this buffer is almost full then we start
(in parallel) the spilling phase in order to remove data from it - SHUFFLE phase: at the end of the spilling phase, we merge all the map outputs and package them for the reduce phase
MapTask: INIT
During the INIT phase, we:
- create a context (
TaskAttemptContext.class
) - create an instance of the user
Mapper.class
- setup the input (e.g.,
InputFormat.class
,InputSplit.class
,RecordReader.class
) - setup the output (
NewOutputCollector.class
) - create a mapper context (
MapContext.class
,Mapper.Context.class
) - initialize the input, e.g.:
- create a
SplitLineReader.class
object - create a
HdfsDataInputStream.class
object
MapTask: EXECUTION
The EXECUTION phase is performed by the run
method
of the Mapper
class. The user can override it, but by default it will start by calling the setup
method:
this function by default does not do anything useful but can be override by the user in order to setup the Task (e.g., initialize class variables). After the setup, for each <key, value> tuple contained in the map split, the map()
is
invoked. Therefore, map()
receives: a key a value, and a mapper context. Using the context, a map
stores
its output to a buffer.
Notice that the map split is fetched chuck by chunk (e.g., 64KB) and each chunk is split in several (key, value) tuples (e.g., using SplitLineReader.class
).
This is done inside the Mapper.Context.nextKeyValue
method.
When the map split has been completely processed, the run
function
calls the clean
method: by default, no action is performed but the user may decide to override
it.
MapTask: SPILLING
As seen in the EXECUTING phase, the map
will
write (using Mapper.Context.write()
) its output into a circular in-memory buffer (MapTask.MapOutputBuffer
).
The size of this buffer is fixed and determined by the configuration parameter mapreduce.task.io.sort.mb
(default:
100MB).
Whenever this circular buffer is almost full (mapreduce.map.
: 80% by default), the SPILLING phase is performed (in parallel using a separate thread). Notice that if the splilling thread is too slow and the buffer is 100% full, then the
sort.spill.percentmap()
cannot
be executed and thus it has to wait.
The SPILLING thread performs the following actions:
- it creates a
SpillRecord
andFSOutputStream
(local
filesystem) - in-memory sorts the used chunk of the buffer: the output tuples are sorted by (partitionIdx, key) using a quicksort algorithm.
- the sorted output is split into partitions: one partition for each ReduceTask of the job (see later).
- Partitions are sequentially written into the local file.
How Many Reduce Tasks?
The number of ReduceTasks for the job is decided by the configuration parameter mapreduce.job.reduces
.
What
is the partitionIdx associated to an output tuple?
The paritionIdx of an output tuple is the index of a partition. It is decided inside the Mapper.Context.write()
:
partitionIdx = (key.hashCode() & Integer.MAX_VALUE) % numReducers
It is stored as metadata in the circular buffer alongside the output tuple. The user can customize the partitioner by setting the configuration parameter mapreduce.job.partitioner.class
.
When do we apply
the combiner?
If the user specifies a combiner then the SPILLING thread, before writing the tuples to the file (4), executes the combiner on the tuples contained in each partition. Basically, we:
- create an instance of the user
Reducer.class
(the one specified
for the combiner!) - create a
Reducer.Context
: the output will be stored on the
local filesystem - execute
Reduce.run()
: see Reduce Task description
The combiner typically use the same implementation of the standard reduce()
function
and thus can be seen as a local reducer.
MapTask: end of EXECUTION
At the end of the EXECUTION phase, the SPILLING thread is triggered for the last time. In more detail, we:
- sort and spill the remaining unspilled tuples
- start the SHUFFLE phase
Notice that for each time the buffer was almost full, we get one spill file (SpillReciord
+
output file). Each Spill file contains several partitions (segments).
MapTask: SHUFFLE
Reduce Phase
[…]
YARN and MapReduce
interaction
MapReduce 图解流程的更多相关文章
- MapReduce的数据流程、执行流程
MapReduce的数据流程: 预先加载本地的输入文件 经过MAP处理产生中间结果 经过shuffle程序将相同key的中间结果分发到同一节点上处理 Recude处理产生结果输出 将结果输出保存在hd ...
- hadoop笔记之MapReduce的运行流程
MapReduce的运行流程 MapReduce的运行流程 基本概念: Job&Task:要完成一个作业(Job),就要分成很多个Task,Task又分为MapTask和ReduceTask ...
- [MapReduce_3] MapReduce 程序运行流程解析
0. 说明 Word Count 程序运行流程解析 && MapReduce 程序运行流程解析 1. Word Count 程序运行流程解析 2. MapReduce 程序运行流程图
- Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(二)
本文继<Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)>,接着讲述MapReduce作业在MRAppMaster上处理总流程,继上篇讲到作业初始化之后的作 ...
- Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)
我们知道,如果想要在Yarn上运行MapReduce作业,仅需实现一个ApplicationMaster组件即可,而MRAppMaster正是MapReduce在Yarn上ApplicationMas ...
- MapReduce的工作流程
MapReduce的工作流程 1.客户端将每个block块切片(逻辑切分),每个切片都对应一个map任务,默认一个block块对应一个切片和一个map任务,split包含的信息:分片的元数据信息,包含 ...
- MapReduce 图解流程超详细解答(1)-【map阶段】
转自:http://www.open-open.com/lib/view/open1453097241308.html 在MapReduce中,一个YARN 应用被称作一个job, MapReduc ...
- MapReduce 图解流程超详细解答(2)-【map阶段】
接上一篇讲解:http://blog.csdn.net/mrcharles/article/details/50465626 map任务:溢写阶段 正如我们在执行阶段看到的一样,map会使用Mappe ...
- MapReduce 图解流程
Anatomy of a MapReduce Job In MapReduce, a YARN application is called a Job. The implementation of t ...
随机推荐
- Linux 内建命令和系统命令
shell内建命令是指bash(或其它版本)工具集中的命令.一般都会有一个与之同名的系统命令,比如bash中的echo命令与/bin/echo是两个不同的命令,尽管他们行为大体相仿.当在bash中键入 ...
- 今日SGU 5.1
SGU 100 题意: 普通的a+b #include<bits/stdc++.h> #define de(x) cout<<#x<<"="&l ...
- highcharts 阶梯图表并填充颜色(自己觉得:直角折线图表)
例如以下:普通阶梯图 $(function () { $('#container').highcharts({ title: { text: '普通阶梯图' ...
- js---15,模拟数组的ecah方法
原型的另外一个作用就是扩展对象中的属性和方法的 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http:// ...
- git 工具的使用总结(5)-查看历史记录
1.查看历史记录git log 1)不加参数,显示的就是节点号,作者,日期,注释 commit b7b310d220628530d1feb9e8046ccb59039d59f2 Author: zha ...
- Android学习笔记之详细讲解画圆角图片
package xiaosi.RoundConcer; import android.app.Activity; import android.graphics.Bitmap; import andr ...
- jQuery post 打开新窗口
//使用POST方式打开界面 function doOpenPostWin(url, args, name, windowParam) { //创建表单对象 var _form = $("& ...
- BZOJ3676: [Apio2014]回文串(SAM+Manacher/PAM)
Description 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. Input 输入只有一行 ...
- 三、Docker镜像的相关操作
原文:三.Docker镜像的相关操作 一.查看本地镜像: docker images 二.使用某个镜像来运行容器: docker run -t -i xxxx(镜像名):xx.xx(版本,不带即最新) ...
- jsp 用shiro 的判断 是否有菜单查看的权限
实例:spring-shiro.xml 123 /admin/repairType/index = roles["ROLE_ADMIN"]/admin/user=roles[&qu ...