UVA 11248 Frequency Hopping
Frequency Hopping
This problem will be judged on UVA. Original ID: 11248
64-bit integer IO format: %lld Java class name: Main
20th July, 1942
Colonel Al Pacheno,According to the previous order “ref: 232/UK44i/334sda#nh$X3y”, you are required back in the DOI (Department of intelligence, London) to head the special programming contingent immediately. You are to assign a programmer for the job whose specification is attached with this letter. Level 3 Secrecy must be maintained.
Sincerely,
General Shaan Konary
Director, DOI
London
Ps: Sorry to ruin your Caribbean holiday
232/UK44i/334sda#nh$X3y/Appx-301a
At this moment, through out Europe, our base station numbers 1 to N are actively operational
through wireless channels. Immediately we require sending C secret message fragments from
our head quarters (base station 1) to Nth base station. Germans have developed Zämmhäim – a
machine which jams the frequency channel between base stations after a station has sent a
message fragment. In that case, the base stations must transmit using a different frequency
channel for each message fragment. There are several unidirectional channels set up between
base stations at this moment. We can only make arrangements to set up number of frequency
channels only between two base stations. Your task is to check whether all the message
fragments can be sent to the desired base station with or without increasing frequency channel
between any two particular base stations. You have to give us all possible options if it is
required to increase frequency channel between two stations.
--End of Attachment
As members of Secret Programmers Group (SPG) you are assigned to solve this problem within 5 hrs
and deliver the solution directly to Colonel Al Pacheno. You have to maintain Level 3 secrecy and
destroy all documents corresponding to this as soon as you deliver the solution.
Input:
There will be multiple test cases. The first line of each test case contains three numbers N, E and C
where N (0<N<101) represents the number of base stations, E (E<10000) represents the number of
available connections between the base stations and C (C<2000000000) represents the number of
secret message fragments that are required to send from station 1 to station N. After that, there will be
E lines. Each line contains 3 numbers: b1(0<b1<101), b2(0<b2<101) and fp (0<fp<5001) which
represent the number of frequency channels available currently from b1 to b2. Input is terminated when
N=E=C=0. 1
Output:
For each test case, there will be one line of output. First, you have to print the case number. If it is
possible to send C secret message fragments from the current status the output will be “possible”.
Otherwise, you have to print all pairs of stations (in ascending order) if it is possible send the required
message fragments by increasing the frequency channel between any one of them. If it is still
impossible, you have to print “not possible”.
Sample Input Output for Sample Input
4 4 5
1 2 5
1 3 5
2 4 5
3 4 5
4 4 5
1 2 1
1 3 5
2 4 5
3 4 1
4 4 5
1 2 1
1 3 1
2 4 1
3 4 1
0 0 0
Case 1: possible
Case 2: possible option:(1,2),(3,4)
Case 3: not possible
Problemsetter: Syed Monowar Hossain
Special Thanks: Abdullah al Mahmud
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc {
int to,flow,next;
arc(int x = ,int y = ,int z = -) {
to = x;
flow = y;
next = z;
}
};
arc e[maxn*];
int head[maxn],d[maxn],cur[maxn];
int tot,S,T,N,E,C,cnt;
void add(int u,int v,int flow) {
e[tot] = arc(v,flow,head[u]);
head[u] = tot++;
e[tot] = arc(u,,head[v]);
head[v] = tot++;
}
bool bfs() {
memset(d,-,sizeof(d));
queue<int>q;
d[S] = ;
q.push(S);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].flow > && d[e[i].to] == -) {
d[e[i].to] = d[u] + ;
q.push(e[i].to);
}
}
}
return d[T] > -;
}
pii rec[maxn*];
int dfs(int u,int low) {
if(u == T) return low;
int tmp = ,a;
for(int &i = cur[u]; ~i; i = e[i].next) {
if(e[i].flow > && d[e[i].to] == d[u]+&&(a=dfs(e[i].to,min(low,e[i].flow)))) {
e[i].flow -= a;
e[i^].flow += a;
low -= a;
tmp += a;
rec[cnt++] = make_pair(i,a);
rec[cnt++] = make_pair(i^,-a);
if(!low) break;
}
}
if(!tmp) d[u] = -;
return tmp;
}
int dinic() {
int ans = ;
cnt = ;
while(bfs()) {
memcpy(cur,head,sizeof(head));
ans += dfs(S,INF);
}
return ans;
}
void release(){
for(int i = ; i < cnt; ++i)
e[rec[i].first].flow += rec[i].second;
}
vector< pii >ans;
int main() {
int u,v,w,cs = ;
while(scanf("%d %d %d",&N,&E,&C),N||E||C) {
memset(head,-,sizeof(head));
S = ;
T = N;
for(int i = ; i < E; ++i) {
scanf("%d %d %d",&u,&v,&w);
add(u,v,w);
}
int flow = dinic();
printf("Case %d: ",cs++);
if(flow >= C) puts("possible");
else {
ans.clear();
for(int i = ; i < tot; i += ) {
if(e[i].flow == ){
e[i].flow = C;
if(flow + dinic() >= C) ans.push_back(make_pair(e[i^].to,e[i].to));
release();
e[i].flow = ;
}
}
if(ans.size()){
printf("possible option:");
sort(ans.begin(),ans.end());
for(int i = ,j = ans.size(); i < j; ++i)
printf("(%d,%d)%c",ans[i].first,ans[i].second,i+==j?'\n':',');
}else puts("not possible");
}
}
return ;
}
这样写 快很多啊
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc {
int to,flow,next;
arc(int x = ,int y = ,int z = -) {
to = x;
flow = y;
next = z;
}
};
arc e[maxn*];
int head[maxn],d[maxn],cur[maxn];
int tot,S,T,N,E,C,cnt;
void add(int u,int v,int flow) {
e[tot] = arc(v,flow,head[u]);
head[u] = tot++;
e[tot] = arc(u,,head[v]);
head[v] = tot++;
}
bool bfs() {
memset(d,-,sizeof(d));
queue<int>q;
d[T] = ;
q.push(T);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i^].flow > && d[e[i].to] == -) {
d[e[i].to] = d[u] + ;
q.push(e[i].to);
}
}
}
return d[S] > -;
}
pii rec[maxn*];
int dfs(int u,int low) {aaa
if(u == T) return low;
int tmp = ,a;
for(int &i = cur[u]; ~i; i = e[i].next) {
if(e[i].flow > && d[u] == d[e[i].to]+&&(a=dfs(e[i].to,min(low,e[i].flow)))) {
e[i].flow -= a;
e[i^].flow += a;
low -= a;
tmp += a;
rec[cnt++] = make_pair(i,a);
rec[cnt++] = make_pair(i^,-a);
if(!low) break;
}
}
if(!tmp) d[u] = -;
return tmp;
}
int dinic() {
int ans = ;
cnt = ;
while(bfs()) {
memcpy(cur,head,sizeof(head));
ans += dfs(S,INF);
}
return ans;
}
void release(){
for(int i = ; i < cnt; ++i)
e[rec[i].first].flow += rec[i].second;
}
vector< pii >ans;
int main() {
int u,v,w,cs = ;
while(scanf("%d %d %d",&N,&E,&C),N||E||C) {
memset(head,-,sizeof(head));
S = ;
T = N;
for(int i = ; i < E; ++i) {
scanf("%d %d %d",&u,&v,&w);
add(u,v,w);
}
int flow = dinic();
printf("Case %d: ",cs++);
if(flow >= C) puts("possible");
else {
ans.clear();
for(int i = ; i < tot; i += ) {
if(e[i].flow == ){
e[i].flow = C;
if(flow + dinic() >= C) ans.push_back(make_pair(e[i^].to,e[i].to));
release();
e[i].flow = ;
}
}
if(ans.size()){
printf("possible option:");
sort(ans.begin(),ans.end());
for(int i = ,j = ans.size(); i < j; ++i)
printf("(%d,%d)%c",ans[i].first,ans[i].second,i+==j?'\n':',');
}else puts("not possible");
}
}
return ;
}
UVA 11248 Frequency Hopping的更多相关文章
- UVA 11248 - Frequency Hopping(网络流量)
UVA 11248 - Frequency Hopping 题目链接 题意:给定一个网络,如今须要从1到N运输流量C,问是否可能,假设可能输出可能,假设不可能,再问能否通过扩大一条边的容量使得可能,假 ...
- uva 11248 Frequency Hopping (最大流)
uva 11248 Frequency Hopping 题目大意:给定一个有向网络,每条边均有一个容量. 问是否存在一个从点1到点N.流量为C的流.假设不存在,能否够恰好改动一条弧的容量,使得存在这种 ...
- UVa 11248 Frequency Hopping (网络流)
题意:给定上一个网络,每个边有一个容量,问你能不能从 1 到 n,使得流量为 c,如果不能,那么是不是可以修改一条边,使得达到. 析:背景就是一个网络流,如果原图能跑出来,那么就不用了,就肯定能达到, ...
- Uvaoj 11248 Frequency Hopping(Dinic求最小割)
题意:1到n节点(节点之间有一定的容量),需要流过C的流量,问是否可以?如果可以输出possible, 否则如果可以扩大任意一条边的容量 可以达到目的,那么输出possible option:接着输出 ...
- Uva 11248 网络扩容
题目链接:https://vjudge.net/contest/144904#problem/A 题意:给定一个有向网络,每条边均有一个容量.问是否存在一个从点1到点N,流量为C的流.如果不存在,是否 ...
- uva 10801 - Lift Hopping(最短路Dijkstra)
/* 题目大意: 就是一幢大厦中有0-99的楼层, 然后有1-5个电梯!每个电梯有一定的上升或下降速度和楼层的停止的位置! 问从第0层楼到第k层最少经过多长时间到达! 思路:明显的Dijkstra , ...
- UVa 10801 - Lift Hopping(dijkstra最短路)
根据题意,以每一层楼为顶点,每个电梯可以到达的两层楼之间的秒数为每一条边的权值,以此构建一个无向图.然后利用dijkstra求出最短的时间,注意每次换乘电梯需要等待60s(因为同一个电梯上的楼层是相互 ...
- UVa 821 Page Hopping【Floyd】
题意:给出一个n个点的有向图,任意两个点之间都相互到达,求任意两点间最短距离的平均值 因为n很小,所以可以用floyd 建立出图,然后用floyd,统计d[][]不为0且不为INF的边的和及条数,就可 ...
- UVA 10801 Lift Hopping 电梯换乘(最短路,变形)
题意: 有n<6部电梯,给出每部电梯可以停的一些特定的楼层,要求从0层到达第k层出来,每次换乘需要60秒,每部电梯经过每层所耗时不同,具体按 层数*电梯速度 来算.问经过多少秒到达k层(k可以为 ...
随机推荐
- webstorm狂吃内存的解决方法
今天使用webstorm,电脑居然卡死了,我的电脑配置: 运行内存16g,1.5T内存的台式, 后来发现,可以通过设置 内存值大小来解决. 具体办法: 找到WebStorm.exe.vmoptions ...
- Flask入门系列(转载)
一.入门系列: Flask入门系列(一)–Hello World 项目开发中,经常要写一些小系统来辅助,比如监控系统,配置系统等等.用传统的Java写,太笨重了,连PHP都嫌麻烦.一直在寻找一个轻量级 ...
- layui select change
<select lay-filter="test"></select> layui.use([ 'form'], function() { var form ...
- ArcGIS探索
一.ArcGIS10概述 1.1 总览 ArcGIS是地理信息系统平台软件,主要用于创建和使用地图,编辑和管理地理数据,分析和共享地理信息,并在一系列应用中使用地图和地理信息. 功能定位: a.地图: ...
- C# 实现窗口程序winform像QQ一样靠近桌面边缘自动隐藏窗口
实现原理: 实现这个功能的原理步骤如下: 1.判断窗体程序是否靠近桌面边缘: 2.获取桌面屏幕大小与窗体程序大小: 3.把窗体程序显示在桌面以外隐藏起来,预留部分窗体方便用户拉出程序: 4.判断鼠标是 ...
- 洛谷 P2932 [USACO09JAN]地震造成的破坏Earthquake Damage
P2932 [USACO09JAN]地震造成的破坏Earthquake Damage 题目描述 Wisconsin has had an earthquake that has struck Farm ...
- Qt Quick 简单介绍
Qt Quick 是 Qt 提供的一种高级用户界面技术.使用它可轻松地为移动和嵌入式设备创建流畅的用户界面. 在 Android 设备上, Qt Quick 应用默认使用 OpenGL ES ,渲染效 ...
- iOS (封装)一句话调用系统的alertView和alertController
前言: 本文仅作参考存留,请用新版封装:iOS 更加优雅便捷的UIAlertView/UIAlertController封装使用 UIAlertController是iOS8.0之后出来的新方法,其将 ...
- CoreData的介绍和使用
一.CoreData是什么? CoreData是iOS SDK里的一个很强大的框架,允许程序员以面向对象的方式存储和管理数据.使用CoreData框架,程序员可以轻松有效地通过面向对象的接口管理数据 ...
- Oracle RAC集群体系结构
一. Oracle集群体系结构 Oracle RAC,全称是Oracle Real Application Cluster,即真正的应用集群,是oracle提供的一个并行集群系统,整个集群系统由Ora ...