caioj 1155 同余方程组(模版)
第一步,和同余方程一样,转化一下
两式相减得
这就转化为了求不定方程,用exgcd
求出x,要化成最小正整数解,避免溢出
然后可以求出P出来。
这个时候要把前两个式子转化成一个式子
设求出来的是P’
则有
这个就转化成了新的m1和b1
然后就一直求下去即可
最终b1就是答案
#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
void exgcd(ll a, ll b, ll& d, ll& x, ll& y)
{
if(!b) { d = a; x = 1; y = 0; return; }
else { exgcd(b, a % b, d, y, x); y -= x * (a / b); }
}
int main()
{
ll n, b1, m1, b2, m2;
scanf("%lld%lld%lld", &n, &b1, &m1);
bool ok = true;
REP(i, 1, n)
{
scanf("%lld%lld", &b2, &m2);
ll A, B, K, x, y, d;
A = m1, B = m2, K = b2 - b1;
exgcd(A, B, d, x, y);
if(K % d != 0) ok = false;
x *= K / d; int mod = B / d;
x = (x % mod + mod) % mod;
b1 = m1 * x + b1; //这里顺序要注意
m1 = m1 / d * m2;
}
if(!ok) puts("no solution!");
else printf("%lld\n", b1);
return 0;
}
caioj 1155 同余方程组(模版)的更多相关文章
- 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)
题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...
- caioj 1154 同余方程(模版)
求x的最小正整数解,使得ax=b(mod m) 那么显然ax - b = m * y ax - my = b 那么就套入Ax+By = K的不定方程中,然后用exgcd求解即可 但这道题求最大正整数解 ...
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- HDU1573:X问题(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语. 这题 ...
- HDU1573 X问题【一元线性同余方程组】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...
- AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ...
- 【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)
题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知).问满足这些条件的最小的硬币数,也就是最小的正整数 X. 解法:转化一下题意就是 拓展欧几里德求解同余 ...
- 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)
题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...
- POJ2891:Strange Way to Express Integers(解一元线性同余方程组)
写一下自己的理解,下面附上转载的:若a==b(modk);//这里的==指的是同余,我用=表示相等(a%k=b)a-b=kt(t为整数)以前理解的错误思想:以前认为上面的形式+(a-tb=k)也是成立 ...
随机推荐
- UVA1584-Circular Sequence(紫书例题3.6)
Some DNA sequences exist in circular forms as in the following gure, which shows a circular sequence ...
- [读书笔记] R语言实战 (五) 高级数据管理
1. 数值函数 1) 数学函数 2) 统计函数 3. 数据标准化 scale() 函数对矩阵或者数据框的指定列进行均值为0,标准化为1的标准化 mydata <- data.frame(c1=c ...
- oracle数据库安装教程以及问题和解决方法
一,oracle数据库的下载和安装 1,在oracle官网上下载oracle安装包,运行setup.exe. 2,点击取消“我希望同构My Oracle Support接受安全更新”,以防后患. 3, ...
- jQuery 文档操作
一.插入操作 1. 父元素.append(子元素) 追加某元素,在父元素中添加新的子元素, 子元素可以为: stirng / element (js对象) / jquery 元素 var oli = ...
- iText操作pdf(生成,导入图片等)
生成pdf有很多种方法,用pdfbox也很方便,今天我要写的是用iText 主要在pom.xml中配置的jar包如下 <dependency> <groupId>com.low ...
- java缓冲区BufferedReader
1.java缓冲区BufferedReader拷贝文件 2.代码如下: package Demo1; import java.io.*; public class BufferedTest { pub ...
- Ubuntu: GlusterFS+HBase安装教程
HBase通常安装在Hadoop HDFS上,但也能够安装在其它实现了Hadoop文件接口的分布式文件系统上.如KFS. glusterfs是一个集群文件系统可扩展到几peta-bytes. 它集合了 ...
- 根据数据库表结构生成java类
import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.io.PrintWrit ...
- html5中调用摄像头拍照
方法: getCamera: 获取摄像头管理对象 对象: Camera: 摄像头对象 CameraOption: JSON对象.调用摄像头的參数 PopPosition: JSON对象,弹出拍照或摄像 ...
- UnrealEngine4初始化流程
自古以来全部的游戏引擎都分为三个大阶段:Init,Loop,Exit.UE4也不例外. 首先找到带有入口函数的文件:Runtime/Launch/Private/XXXX/LaunchXXXX.cpp ...