Sunday是一个线性字符串模式匹配算法。算法的概念如下:
Sunday算法是Daniel M.Sunday于1990年提出的一种字符串模式匹配算法。其核心思想是:在匹配过程中,模式串并不被要求一定要按从左向右进行比较还是从右向左进行比较,它在发现不匹配时,算法能跳过尽可能多的字符以进行下一步的匹配,从而提高了匹配效率。
记模式串为S,子串为T,长度分别为N,M。
对于T,我们做一个简单而巧妙的预处理:记录T中每一种字符最后出现的位置,将其存入一个数组中。
假设在发生不匹配时S[i]≠T[j],1≤i≤N,1≤j≤M。设S此次第一个匹配的字符位置为L。显然,S[L+M+1]肯定要参加下一轮的匹配,并且T至少要与S[L+M+1]匹配才有可能与整个S匹配。
这时我们就寻找T中S[L+M+1]出现的位置了。利用我们预处理好的数组,可以O(1)查找出那个位置u,并将其直接移动至T[u]==S[L+M+1]。特殊地,若S[L+M+1]没有在T中出现,那么T不可能会与S[L+M+1]匹配,则将T的第一位直接移动到S[L+M+2],继续匹配。直至L+M>N时,匹配完毕。
Sunday算法思想跟BM算法很相似,在匹配失败时关注的是文本串中参加匹配的最末位字符的下一位字符。如果该字符没有在匹配串中出现则直接跳过,即移动步长= 匹配串长度+1;否则,同BM算法一样其移动步长=匹配串中最右端的该字符到末尾的距离+1。

算法举例

S:abcceabcaabcd
T:abcd
发现d与c不匹配。此时S[L+M+1]=='e',没有出现在T中。于是:
S:abcceabcaabcd
T:--------abcd
发现d与a不匹配。此时S[L+M+1]=='a',T中最后出现在T[0]。于是:
S:abcceabcaabcd
T:--------------abcd
成功匹配。
 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int wei[]={};
int ans=,lend,lenc,tot=;//tot用于统计匹配次数,便于直观地与其他算法比较
char c[],d[];
void pei()
{
int w=;//记录d匹配失败以后向右移动的数量
while(w+lend<=lenc)
{
int i=;//正在匹配的位数
bool f=false;//默次数认匹配成功
while(i<=lend && f==false)
{
if(c[i+w]!=d[i])
f=true;//匹配失败
i++;tot++;// 匹配下一位,匹配次数+1
}
if(f==false)
{ans++;
cout<<i<<endl;
w++;}//当匹配成功的话就让b串整体右移一位,与a串的下一位进行匹配
else//匹配失败
{
i=lend+;// 直接匹配a串中b串再次出现的位置
if(wei[c[i+w]]==-)
w=w+i+;//没有出现过得话,就让b串整体右移lend+1位
else w=w+i-wei[c[w+i]];//如果出现过的话就跳到出现位置?
}
}
return;
}
int main()
{
gets(c);
gets(d);
lenc=strlen(c)-;
lend=strlen(d)-;
for(int i=;i<=;++i)wei[i]=-;
for(int i=;i<=lend;++i)
wei[d[i]]=i;//记录每一个字符出现的位置
pei();
if(ans)
cout<<ans<<endl<<tot;
else cout<<"mission failed";
return ;
}

Sunday算法模板的更多相关文章

  1. BF、KMP、BM、Sunday算法讲解

    BF.KMP.BM.Sunday算法讲解 字串的定位操作通常称作串的模式匹配,是各种串处理系统中最重要的操作之一. 事实上也就是从一个母串中查找一模板串,判定是否存在. 现给出四种匹配算法包括BF(即 ...

  2. 数据结构 Sunday算法

    Sunday算法是Daniel M.Sunday于1990年提出的字符串模式匹配算法.相对比较KMP和BM算法而言,简单了许多. Sunday算法的思想类似于BM算法中的坏字符思想,有点像其删减版.差 ...

  3. 字符串匹配 - sunday算法

    常见的字符串匹配算法有BF.KMP(教科书中非常经典的).BM.Sunday算法 这里主要想介绍下性能比较好并且实现比较简单的Sunday算法 . 基本原理: 从前往后匹配,如果遇到不匹配情况判断母串 ...

  4. 文本比较算法三——SUNDAY 算法

    SUNDAY 算法描述: 字符串查找算法中,最著名的两个是KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore).两个算法在最坏情况下均具有线性的查找时间.但是在实用上 ...

  5. 匈牙利 算法&模板

    匈牙利 算法 一. 算法简介 匈牙利算法是由匈牙利数学家Edmonds于1965年提出.该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法. 二分图的定义: 设G=(V,E)是一个 ...

  6. Tarjan 算法&模板

    Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...

  7. hdu 2255 奔小康赚大钱--KM算法模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:有N个人跟N个房子,每个人跟房子都有一定的距离,现在要让这N个人全部回到N个房子里面去,要 ...

  8. 字符串匹配的sunday算法

    sunday算法核心思想:启发式移动搜索步长! SUNDAY 算法描述: 字符串查找算法中,最著名的两个是KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore).这里介 ...

  9. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

随机推荐

  1. bzoj 5092 分割序列 —— 高维前缀和

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5092 首先,处理出异或前缀和 s[i],i 位置的答案就是 s[j] + s[j]^s[i] ...

  2. JAVA 内部类 (三)实例

    为什么要用内部类:控制框架 一个“应用程序框架”是指一个或一系列类,它们专门设计用来解决特定类型的问题.为应用应用程序框架,我们可从一个或多个类继承,并覆盖其中的部分方法.我们在覆盖方法中编写的代码用 ...

  3. Ubuntu+win7 双系统修改开机启动项顺序

    Ubuntu和windows双系统安装完后默认Ubuntu系统是第一启动项,等待时间是10秒 如果你想改成windows为第一启动项 先进去Ubuntu系统 打开终端 (Ctrl+Alt+T) 修改启 ...

  4. python学习笔记——Thread常用方法

    Thread对象中的一些方法: 以前说过多线程,用到threading模块中的Thread对象,其中的start和run方法比较熟悉了,start()是重载了Thread对象中的run方法,其实作用还 ...

  5. Git(一)

    Git概念 Git其实是一种分布式版本控制系统,与CVS,Subversion等集中化的版本控制系统相对.它主要有几个特点: • 速度快 • 简单的设计 • 对非线性开发模式的强力支持(允许上千个并行 ...

  6. Python 之IO模型

    阻塞IO模型:以前写的套接字通信都是阻塞型的.通过并发提高效率 非阻塞IO模型: from socket import * # 并不推荐使用,一是消耗cpu资源,二是会响应延迟 server = so ...

  7. 【Linux学习】Linux系统管理2—作业调度

    Linux系统管理2-作业调度 at: 作业仅执行一次就从系统工作队列中取消 语法 denny@ubuntu:~$ at [-m] TIME                     → 作业命令at ...

  8. MyEclipse控制台console自动跳动的解决方案

    有时候Eclipse启动,控制台console不会自动跳出来,需要手工点击该选项卡才行 按下面的设置,可以让它自动跳出来(或不跳出来): windows  ->   preferences   ...

  9. easyui datagrid 列对不齐

    function initBIRDataGrid(id,cols){ $('#basicTable').datagrid({ //列表区域 pageList: [5, 10, 15], fit:tru ...

  10. Bootstrap 自适应排列顺序

    一.前用 我们在做一些页面的设计时,总会想到自适应的问题.其实 Bootstrap 框架就很好的融合这个问题了.下面是我学习 Bootstrap 的总结. 二.问题来源 我为什么会遇见这个问题,是因为 ...