SG函数学习总结
有点散乱, 将就着看吧.
首先是博弈论的基础, 即 N 和 P 两种状态: N 为必胜状态, P 为必败状态.
对于N, P两种状态, 则有
1. 没有任何合法操作的状态, P;
2. 可以移动到P局面的情况为N状态;
3. 可以移动到的所有状态均为N状态, 则当前情况为P状态.
然后就可以引入SG函数了.
首先定义mex运算, 这是施加于一个集合的运算, 表示最小的不属于这个集合的非负整数。
for instance,
mex{0, 1, 2, 4} = 3、mex{2, 3, 5} = 0、mex{} = 0。
对于一个给定的有向无环图, 定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x) = mex{ g(y) | y是x的后继}, 这里的g(x)即
sg[x]。
例如:取石子问题, 有1堆n个的石子, 每次只能取{1, 3, 4}个石子, 先取完石子者胜利, 那么各个数的SG值为多少?
sg[0] = 0, f[] = {1, 3, 4},
x = 1时, 可以取走1-f{1}个石子, 剩余{0}个, mex{sg[0]} = {0}, 故sg[1] = 1;
x = 2时, 可以取走2-f{1}个石子, 剩余{1}个, mex{sg[1]} = {1}, 故sg[2] = 0;
x = 3时, 可以取走3-f{1, 3}个石子, 剩余{2, 0}个, mex{sg[2], sg[0]} = {0, 0}, 故sg[3] = 1;
x = 4时, 可以取走4-f{1, 3, 4}个石子, 剩余{3, 1, 0}个, mex{sg[3], sg[1], sg[0]} = {1, 1, 0}, 故sg[4] = 2;
x = 5时, 可以取走5-f{1, 3, 4}个石子, 剩余{4, 2, 1}个, mex{sg[4], sg[2], sg[1]} = {2, 0, 1}, 故sg[5] = 3;
以此类推…..
x 0 1 2 3 4 5 6 7 8
sg 0 1 0 1 2 3 2 0 1
这里的sg函数与上面提到的N, P两种状态实际上是吻合的, 当 sg[i] == 0 时, 处于P状态; 否则处于N状态.
SG函数学习总结的更多相关文章
- SG函数学习
尼姆博弈就是sg函数的简单体现 学习粗:https://blog.csdn.net/luomingjun12315/article/details/45555495 //f[N]:可改变当前状态的方式 ...
- SG 函数学习
\(Mex\) 运算 \(mex(S)\) 为不属于集合 \(S\) 的最小非负整数,即: \[mex(S)=\min \limits_{x \in \mathbb{N},x \not\in S} \ ...
- 学习笔记--博弈组合-SG函数
fye学姐的测试唯一的水题.... SG函数是一种游戏图每个节点的评估函数 具体定义为: mex(minimal excludant)是定义在整数集合上的操作.它的自变量是任意整数集合,函数值是不属于 ...
- HDU 1536 sg函数
S-Nim Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- hdu-------(1848)Fibonacci again and again(sg函数版的尼姆博弈)
Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
- 【转】博弈问题及SG函数(真的很经典)
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...
- (转)博弈问题与SG函数
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...
- 博弈论进阶之SG函数
SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...
- 博弈论初步(SG函数)
讲解见此博客https://blog.csdn.net/strangedbly/article/details/51137432 理解Nim博弈,基于Nim博弈理解SG函数的含义和作用. 学习求解SG ...
随机推荐
- 关于sizeof,对空指针sizeof(*p)可以吗?
C/C++的sizeof在动态分配内存时经常用到,但之前一直没怎么关注它的具体机制.今天在为一个复杂声明的指针分配内存时,想起来要了解一下sizeof到底是什么? 先抛个问题: 程序运行过程中对空指针 ...
- Linux权限和指令的关系
1.让用户能进入某目录称为”可工作目录“的基本权限为何: 可使用的指令:例如cd等变换工作目录的指令: 目录所需权限:用户对这个目录至少需要具有x的权限 额外需求:如果用户想要在这个目录内利用ls查阅 ...
- selenium非常好的资料收集
非常全的中文资料:http://qi-ling2006.iteye.com/ http://blog.csdn.net/qq744746842/article/details/49926917
- PHP变量的生命周期
变量不仅有其特定的作用范围,还有其存活的周期--生命周期.变量的生命周期指的是变量可被使用的一个时间段,在这个时间段内变量是有效的,一旦超出这个时间段变量就会失效,我们就不能够再访问到该变量的值了. ...
- 【转】Bad Smell(代码的坏味道)
1.Duplicated Code(重复的代码) 臭味行列中首当其冲的就是Duplicated Code.如果你在一个以上的地点看到相同的程序结构,那么当可肯定:设法将它们合而为一,程序会变得更好. ...
- js多少时间之前
<?php $time = time()*1000; $end_time = strtotime("2018-01-01")*1000; $time_ago = $time ...
- 如何使用Python的logging模块
几个学习连接: Python官方链接: https://docs.python.org/3.4/library/logging.html?highlight=logging 翻译(不过是2.3版本的) ...
- 【Luogu】P2447外星千足虫(高斯消元)
题目链接 高斯消元解%2意义下的方程,Bitset优化一下. 在消的过程中就能顺便把有解的第一问求出来,记录一下访问过的最大行. #include<cstdio> #include< ...
- IDA动态调试技术及Dump内存
IDA动态调试技术及Dump内存 来源 https://blog.csdn.net/u010019468/article/details/78491815 最近研究SO文件调试和dump内存时,为了完 ...
- [LOJ#114]k 大异或和
[LOJ#114]k 大异或和 试题描述 这是一道模板题. 给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 T⊆S,使得集合 T 在 S 的所有非空子集的不同的异或和中,其异或和 ...